umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High Dose Extrapolation in Climate Change Projections of Heat-Related Mortality
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Epidemiology and Global Health.ORCID iD: 0000-0003-4030-0449
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine.
2012 (English)In: Journal of Agricultural Biological and Environmental Statistics, ISSN 1085-7117, E-ISSN 1537-2693, Vol. 17, no 3, 461-475 p.Article in journal (Refereed) Published
Abstract [en]

One challenge for statisticians and epidemiologists in projecting the future health risks of climate change is how to estimate exposure-response relationships when temperatures are higher than at present. Low dose extrapolation has been an area of rich study, resulting in well-defined methods and best practices. A primary difference between high dose and low dose extrapolation of exposure-response relationships is that low dose extrapolation is bounded at no exposure and no (or a baseline) response. With climate change altering weather variables and their variability beyond historical values, the highest future exposures in a region are projected to be higher than current experience. Modelers of the health risks of high temperatures are making assumptions about human responses associated with exposures outside the range of their data; these assumptions significantly affect the magnitude of projected future risks. Further, projections are affected by adaptation assumptions; we explore no adaptation (extrapolated response); individual (physiological) adaptation; and community adaptation. We present an example suggesting that linear models can make poor predictions of observations when no adaptation is assumed. Assumptions of the effects of weather above what has been observed needs to be more transparent in future studies. Statistical simulation studies could guide public health researchers in identifying best practices and reducing bias in projecting risks associated with extreme temperatures. Epidemiological studies should evaluate the extent and time required for adaptation, as well as the benefits of public health interventions.

Place, publisher, year, edition, pages
2012. Vol. 17, no 3, 461-475 p.
Keyword [en]
Climate change, Extrapolation, Extremes, Heatwaves, Predictions, Splines
National Category
Public Health, Global Health, Social Medicine and Epidemiology
Identifiers
URN: urn:nbn:se:umu:diva-61201DOI: 10.1007/s13253-012-0104-zISI: 000309101000009OAI: oai:DiVA.org:umu-61201DiVA: diva2:565715
Available from: 2012-11-08 Created: 2012-11-07 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Rocklöv, JoacimEbi, Kristie L.

Search in DiVA

By author/editor
Rocklöv, JoacimEbi, Kristie L.
By organisation
Epidemiology and Global HealthOccupational and Environmental Medicine
In the same journal
Journal of Agricultural Biological and Environmental Statistics
Public Health, Global Health, Social Medicine and Epidemiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf