Change search
ReferencesLink to record
Permanent link

Direct link
Influence of gas compression on flame acceleration in the early stage of burning in tubes
Princeton University.
West Virginia University.
Karlsruhe Institute of Technology.
Chalmers University of Technology.
Show others and affiliations
2013 (English)In: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 160, no 1, 97-111 p.Article in journal (Refereed) Published
Abstract [en]

The mechanism of finger flame acceleration at the early stage of burning in tubes was studied experimentally by Clanet and Searby [Combust. Flame 105 (1996) 2251 for slow propane-air flames, and elucidated analytically and computationally by Bychkov et al. [Combust. Flame 150 (2007) 2631 in the limit of incompressible flow. We have now analytically, experimentally and computationally studied the finger flame acceleration for fast burning flames, when the gas compressibility assumes an important role. Specifically, we have first developed a theory through small Mach number expansion up to the first-order terms, demonstrating that gas compression reduces the acceleration rate and the maximum flame tip velocity, and thereby moderates the finger flame acceleration noticeably. This is an important quantitative correction to previous theoretical analysis. We have also conducted experiments for hydrogen-oxygen mixtures with considerable initial values of the Mach number, showing finger flame acceleration with the acceleration rate much smaller than those obtained previously for hydrocarbon flames. Furthermore, we have performed numerical simulations for a wide range of initial laminar flame velocities, with the results substantiating the experiments. It is shown that the theory is in good quantitative agreement with numerical simulations for small gas compression (small initial flame velocities). Similar to previous works, the numerical simulation shows that finger flame acceleration is followed by the formation of the "tulip" flame, which indicates termination of the early acceleration process.

Place, publisher, year, edition, pages
2013. Vol. 160, no 1, 97-111 p.
Keyword [en]
Hydrogen-oxygen premixed flames, Flame acceleration, Compressibility, Finger flames, Tulip flames
National Category
Other Physics Topics
URN: urn:nbn:se:umu:diva-61392DOI: 10.1016/j.combustflame.2012.09.002OAI: diva2:567325
Available from: 2012-11-12 Created: 2012-11-12 Last updated: 2014-11-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Valiev, DamirBychkov, Vitaly
By organisation
Department of Physics
In the same journal
Combustion and Flame
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 73 hits
ReferencesLink to record
Permanent link

Direct link