umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Turan H-densities for 3-graphsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)In: The Electronic Journal of Combinatorics, ISSN 1077-8926, Vol. 19, no 3, P40- p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Newark: The Electronic Journal of Combinatorics , 2012. Vol. 19, no 3, P40- p.
##### Keyword [en]

Turan problems, extremal hypergraph theory, flag algebras
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-61562ISI: 000309522100001OAI: oai:DiVA.org:umu-61562DiVA: diva2:572611
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2012-11-28 Created: 2012-11-20 Last updated: 2012-11-28Bibliographically approved

Given an r-graph H on h vertices, and a family F of forbidden subgraphs, we define ex H (n, F) to be the maximum number of induced copies of H in an F-free r-graph on n vertices. Then the Turan H-density of F is the limit pi(H)(F) = (lim)(n ->infinity) ex(H)(n, F)/((n)(h)) This generalises the notions of Turan-density (when H is an r-edge), and inducibility (when F is empty). Although problems of this kind have received some attention, very few results are known. We use Razborov's semi-definite method to investigate Turan H-densities for 3-graphs. In particular, we show that pi(-)(K4)(K-4) = 16/27, with Turans construction being optimal. We prove a result in a similar flavour for K-5 and make a general conjecture on the value of pi(Kt)-(K-t). We also establish that pi(4.2)(empty set) = 3/4, where 4: 2 denotes the 3-graph on 4 vertices with exactly 2 edges. The lower bound in this case comes from a random geometric construction strikingly different from previous known extremal examples in 3-graph theory. We give a number of other results and conjectures for 3-graphs, and in addition consider the inducibility of certain directed graphs. Let (S) over right arrow (k) be the out-star on k vertices; i.e. the star on k vertices with all k 1 edges oriented away from the centre. We show that pi((S) over right arrow3)(empty set) = 2 root 3 - 3, with an iterated blow-up construction being extremal. This is related to a conjecture of Mubayi and Rodl on the Turan density of the 3-graph C-5. We also determine pi((S) over right arrowk) (empty set) when k = 4, 5, and conjecture its value for general k.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});