umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Asymptotics for Quasi-Maximum Likelihood Estimators of GARCH(1,2) Model Under Dependent Innovations
SLU, Centre of Biostochastics.
SLU, Centre of Biostochastics.
2003 (English)Report (Other academic)
Abstract [en]

In this paper, we investigate the asymptotic properties of the quasi-maximum likelihood estimator (quasi-MLE) for GARCH(1,2) model under stationary innovations. Consistency of the global quasi-MLE and asymptotic normality of the local quasi-MLE are obtained, which extend the previous results for GARCH(1,1) under weaker conditions.

Place, publisher, year, edition, pages
Sveriges Lantbruksuniversitet, 2003. , 14 p.
Series
Research Report, Centre of Biostochastics, ISSN 1651-8543 ; 2003-5
Keyword [en]
GARCH model, consistency, asymptotic normality, dependent error
National Category
Probability Theory and Statistics
Research subject
Mathematical Statistics
Identifiers
URN: urn:nbn:se:umu:diva-63725OAI: oai:DiVA.org:umu-63725DiVA: diva2:582503
Available from: 2013-01-04 Created: 2013-01-04 Last updated: 2013-10-08Bibliographically approved

Open Access in DiVA

No full text

Other links

http://biostochastics.slu.se/publikationer/dokument/Report2003_5.pdf

Search in DiVA

By author/editor
Yu, Jun
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf