umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Both substance P and its receptor are expressed in mouse intestinal T lymphocytes
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine. Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Immunology/Immunchemistry.
Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Immunology/Immunchemistry.
Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Immunology/Immunchemistry.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
2001 (English)In: Neuroendocrinology, ISSN 0028-3835, E-ISSN 1423-0194, Vol. 73, no 5, 358-368 p.Article in journal (Refereed) Published
Abstract [en]

Substance P (SP), one of the most prevalent neuropeptides in gut, has been reported to have potent immune modulatory effects as a proinflammatory agent. The synthesis of SP and SP receptor expression in intraepithelial and lamina propria T lymphocytes of mouse intestine was investigated. Using RT-PCR analysis, it was demonstrated that SP receptor mRNA was exclusively expressed in intraepithelial and lamina propria T lymphocytes as well as their purified CD4+, CD8+ and CD4-CD8-CD3+ subsets. Messenger RNAs (mRNAs) for the two precursors of SP, beta and gamma-preprotachykinin-A, were also detected. These results were consistent in lymphocytes from both epithelium and lamina propria of small and large intestines, although the frequencies and/or intensities of mRNA expression varied. However, none of the findings could be repeated in splenic T lymphocytes. Activation of splenocytes with anti-CD3epsilon-chain mAb and PMA did not induce expression of SP or its receptor mRNAs. Furthermore, both cytoplasmic and surface-bound SP was demonstrated in intestinal T lymphocytes using dual color immunocytochemistry and immunoflow cytometry. In vitro treatment with SP did not significantly change the size of the SP-immunoreactive T cell population, indicating the presence of SP receptor on intestinal T lymphocytes as well as in vivo binding of endogenously released SP. Our data suggest that SP production and SP receptor expression are distinctive for mouse intestinal mucosal immunity and that SP may act as a modulator of an ongoing controlled inflammation in normal gut, by acting through its specific receptor on T lymphocytes in an autocrine and/or paracrine pattern.

Place, publisher, year, edition, pages
2001. Vol. 73, no 5, 358-368 p.
Keyword [en]
Substance P, Substance P receptor, Intestine, Lymphocytes
National Category
Neurosciences Endocrinology and Diabetes
Identifiers
URN: urn:nbn:se:umu:diva-68057DOI: 10.1159/000054653PubMedID: 11399909OAI: oai:DiVA.org:umu-68057DiVA: diva2:615649
Available from: 2013-04-11 Created: 2013-04-11 Last updated: 2017-12-06Bibliographically approved
In thesis
1. An experimental study on the interaction between the neuro-endocrine and immune systems in the gastrointestinal tract
Open this publication in new window or tab >>An experimental study on the interaction between the neuro-endocrine and immune systems in the gastrointestinal tract
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The mucosa lining of the gastrointestinal (GI) tract is in immediate contact with food nutrients to allow a rapid and efficient digestion and absorption and at the same time protects against the incessant risk of attack from pathogenic microbes. Maintenance of normal physiological activities in the GI tract is dependent on a number of regulatory interactions between the nervous, endocrine, and immune systems, as well as environmental and genetic factors. Impaired nervous and/or endocrine systems may endanger mucosal immunity and thereby increase the susceptibility to infectious agents, elicit an uncontrolled inflammatory response and cause a failure of immune surveillance. Aberrant immune functions may also lead to an apparent neuro-endocrine disturbance. A better understanding of the neuro-endocrine immunomodulation in the GI tract and its influence on the inflammatory process, therefore, will hold the promise of novel strategy to the treatment of immunologically and/or neuro-endocrinologically mediated diseases with the use of appropriate regulatory substances.

In this thesis, the neuro-endocrine system and its interaction(s) with the immune system in the GI tract were studied using mouse models combined with immunological and molecular biological techniques (e.g. immunomorphometry, quantitative RT-PCR). The following could be concluded:

1) Vagus nerves are fundamental to the enteric neuro-endocrine system. Frequencies and morphology of several types of endocrine cells and tissue levels of neuropeptides along the GI tract were significantly changed by vagotomy.

2) The local enteric neuro-endocrine system may have important influences on bowel inflammation. Polypeptide YY (PYY) cells and tissue levels of PYY, substance P (SP) and vasoactive intestinal polypeptide (VIP) were dramatically decreased in the inflamed colon of IL-2-/- mice as compared to the health IL-2+/- and IL-2+/+ controls.

3) Notably, IL-2 deficiency per se caused marked neuro-endocrine alterations in the gut. The volume densities of enteroglucagon-, serotonin-cells and SP-, VIP- or total myenteric nerves were lower in IL-2+/- and IL-2-/- mice as compared to the wild type. The normally occurring age related neuro-endocrine changes were also absent in mice with no (IL-2-/- mice) or reduced levels of IL-2 (IL-2+/- mice).

4) VIP generally exerted immunosuppressive effects. The magnitude of the effect differed with T cells in different compartments. Proliferation in response to polyclonal T cell activators was significantly down-regulated by VIP in splenic but not intestinal T lymphocytes. Cytokine production was also affected. Expression of mRNAs for interleukin-2 (IL-2), the Th1 cytokine interferon-γ (IFN-γ), and the Th2 cytokine IL-4 in activated small intestinal lamina propria and splenic T cells was inhibited by VIP in a dose dependent manner. In contrast, the inhibitory action of VIP on cytokine production was much less pronounced in intestinal intraepithelial T lymphocytes in which only IFN-γ mRNA expression was reduced.

5) The effects of VIP on lymphocytes are most probably receptor mediated. Intestinal T cells were shown to bind VIP. T cells in both small and large intestine as well as spleen had the mRNA expression for VIP-receptor 1. It was expressed in all T cell subtypes tested i.e. CD4+ , CD8+, and CD4-CD8-CD3+ cells. Interestingly, VIP receptor 2 mRNA was only found in CD8+ lymphocytes of small intestine. This indicates a functional diversity and specificity of VIP in immune modulation.

6) SP may act as an autocrine as well as a paracrine immunoregulatory agent in intestinal mucosa. T cells from both the epithelium and lamina propria of small and large intestine were found to produce SP and at the same time express the SP receptor.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2001. 62 p.
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 719
Keyword
gastrointestinal tract, neuro-endocrine system, substance P, vasoactive intestinal polypeptide, vagus nerves, mucosal immune system, T lymphocytes, cytokines, inflammation, mouse
National Category
Neurology Endocrinology and Diabetes
Identifiers
urn:nbn:se:umu:diva-73364 (URN)91-7191-994-5 (ISBN)
Public defence
2001-03-15, Astrid Fagreussalen A103, Norrlands universitetssjukhus, Umeå, 09:00
Opponent
Available from: 2013-06-20 Created: 2013-06-20 Last updated: 2013-06-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Hammarström, Marie-LouiseDanielsson, Åke

Search in DiVA

By author/editor
Qian, Bi-FengZhou, G-QHammarström, Marie-LouiseDanielsson, Åke
By organisation
MedicineImmunology/Immunchemistry
In the same journal
Neuroendocrinology
NeurosciencesEndocrinology and Diabetes

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf