Change search
ReferencesLink to record
Permanent link

Direct link
Ontogenetic symmetry and asymmetry in energetics
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
2013 (English)In: Journal of Mathematical Biology, ISSN 0303-6812, E-ISSN 1432-1416, Vol. 66, no 4-5, 889-914 p.Article in journal (Refereed) Published
Abstract [en]

Body size ( biomass) is the dominant determinant of population dynamical processes such as giving birth or dying in almost all species, with often drastically different behaviour occurring in different parts of the growth trajectory, while the latter is largely determined by food availability at the different life stages. This leads to the question under what conditions unstructured population models, formulated in terms of total population biomass, still do a fair job. To contribute to answering this question we first analyze the conditions under which a size-structured model collapses to a dynamically equivalent unstructured one in terms of total biomass. The only biologically meaningful case where this occurs is when body size does not affect any of the population dynamic processes, this is the case if and only if the mass-specific ingestion rate, the mass-specific biomass production and the mortality rate of the individuals are independent of size, a condition to which we refer as "ontogenetic symmetry". Intriguingly, under ontogenetic symmetry the equilibrium biomass-body size spectrum is proportional to 1/size, a form that has been conjectured for marine size spectra and subsequently has been used as prior assumption in theoretical papers dealing with the latter. As a next step we consider an archetypical class of models in which reproduction takes over from growth upon reaching an adult body size, in order to determine how quickly discrepancies from ontogenetic symmetry lead to relevant novel population dynamical phenomena. The phenomena considered are biomass overcompensation, when additional imposed mortality leads, rather unexpectedly, to an increase in the equilibrium biomass of either the juveniles or the adults (a phenomenon with potentially big consequences for predators of the species), and the occurrence of two types of size-structure driven oscillations, juvenile-driven cycles with separated extended cohorts, and adult-driven cycles in which periodically a front of relatively steeply decreasing frequencies moves up the size distribution. A small discrepancy from symmetry can already lead to biomass overcompensation; size-structure driven cycles only occur for somewhat larger discrepancies.

Place, publisher, year, edition, pages
2013. Vol. 66, no 4-5, 889-914 p.
Keyword [en]
Physiologically structured population, Ontogenetic symmetry, Size-structure, Biomass overcompensation, Population cycles, Size spectrum
National Category
Biological Sciences
URN: urn:nbn:se:umu:diva-67386DOI: 10.1007/s00285-012-0583-0ISI: 000315093100012OAI: diva2:615891
Available from: 2013-04-12 Created: 2013-03-18 Last updated: 2013-04-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Persson, Lennart
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Journal of Mathematical Biology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 88 hits
ReferencesLink to record
Permanent link

Direct link