umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Boundary behavior of non-negative solutions to degenerate sub-elliptic equationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 254, no 8, p. 3431-3460Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. Vol. 254, no 8, p. 3431-3460
##### Keyword [en]

Hormander condition, Boundary Harnack inequality, Elliptic measure, Sub-elliptic PDEs, Muckenhoupt weights, Quasi-linear equations p-Laplace
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-67954DOI: 10.1016/j.jde.2013.01.030ISI: 000315831000011OAI: oai:DiVA.org:umu-67954DiVA, id: diva2:616033
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt432",{id:"formSmash:j_idt432",widgetVar:"widget_formSmash_j_idt432",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt438",{id:"formSmash:j_idt438",widgetVar:"widget_formSmash_j_idt438",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt444",{id:"formSmash:j_idt444",widgetVar:"widget_formSmash_j_idt444",multiple:true});
Available from: 2013-04-15 Created: 2013-04-09 Last updated: 2017-12-06Bibliographically approved

Let X = {X-1, ..., X-m} be a system of C-infinity vector fields in R-n satisfying Hormander's finite rank condition and let Omega be a non-tangentially accessible domain with respect to the Carnot-Caratheodory distance d induced by X. We study the boundary behavior of non-negative solutions to the equation Lu = Sigma(i, j -1) X-i*(a(ij)X(j)u) = Sigma X-i, j=1(i)*(x)(aij(x)X-j(x)u(x)) = 0 for some constant beta >= 1 and for some non-negative and real-valued function lambda = lambda(x). Concerning kappa we assume that lambda defines an A(2)-weight with respect to the metric introduced by the system of vector fields X =, {X-1,..., X-m}. Our main results include a proof of the doubling property of the associated elliptic measure and the Holder continuity up to the boundary of quotients of non-negative solutions which vanish continuously on a portion of the boundary. Our results generalize previous results of Fabes et al. (1982, 1983) [18-20] (m = n, {X-(1), ..., X-m} = {partial derivative(x1), ...., partial derivative x(n)}, A is an A(2)-weight) and Capogna and Garofalo (1998) [6] (X = {X-1,..., X-m} satisfies Hormander's finite rank condition and X(x) equivalent to lambda A for some constant lambda). One motivation for this study is the ambition to generalize, as far as possible, the results in Lewis and Nystrom (2007, 2010, 2008) [35-38], Lewis et al. (2008) [34] concerning the boundary behavior of non-negative solutions to (Euclidean) quasi-linear equations of p-Laplace type, to non-negative solutions, to certain sub-elliptic quasi-linear equations of p-Laplace type. (C) 2013 Elsevier Inc. All rights reserved.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1141",{id:"formSmash:j_idt1141",widgetVar:"widget_formSmash_j_idt1141",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1194",{id:"formSmash:lower:j_idt1194",widgetVar:"widget_formSmash_lower_j_idt1194",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1195_j_idt1197",{id:"formSmash:lower:j_idt1195:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1195_j_idt1197",target:"formSmash:lower:j_idt1195:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});