umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Required ozone doses for removing pharmaceuticals from wastewater effluents
Show others and affiliations
2013 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 456-457, 42-49 p.Article in journal (Refereed) Published
Abstract [en]

The aim of the this study was to investigate the ozone dosage required to remove active pharmaceutical ingredients (APIs) from biologically treated wastewater of varying quality, originated from different raw wastewater and wastewater treatment processes. Secondary effluents from six Swedish wastewater treatment plants (WWTP) were spiked with 42 APIs (nominal concentration 1μg/L) and treated with different O3 doses (0.5-12.0mg/L ozone) in bench-scale experiments. In order to compare the sensitivity of APIs in each matrix, the specific dose of ozone required to achieve reduction by one decade of each investigated API (DDO3) was determined for each effluent by fitting a first order equation to the remaining concentration of API at each applied ozone dose. Ozone dose requirements were found to vary significantly between effluents depending on their matrix characteristics. The specific ozone dose was then normalized to the dissolved organic carbon (DOC) of each effluent. The DDO3/DOC ratios were comparable for each API between the effluents. 15 of the 42 investigated APIs could be classified as easily degradable (DDO3/DOC≤0.7), while 19 were moderately degradable (0.7<DDO3/DOC≤1.4), and 8 were recalcitrant towards O3-treatment (DDO3/DOC >1.4). Furthermore, we predict that a reasonable estimate of the ozone dose required to remove any of the investigated APIs may be attained by multiplying the experimental average DDO3/DOC obtained with the actual DOC of any effluent.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 456-457, 42-49 p.
Keyword [en]
Matrix effect, Ozonation, Ozone dose, Pharmaceuticals, Wastewater
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-68459DOI: 10.1016/j.scitotenv.2013.03.072PubMedID: 23584032OAI: oai:DiVA.org:umu-68459DiVA: diva2:617083
Available from: 2013-04-22 Created: 2013-04-22 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Fick, JerkerTysklind, Mats
By organisation
Department of Chemistry
In the same journal
Science of the Total Environment
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 149 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf