umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The surface charge of anti-bacterial coatings alters motility and biofilm architecture
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2013 (English)In: Journal of Biomaterials Science. Polymer Edition, ISSN 0920-5063, E-ISSN 1568-5624, Vol. 1, no 6, p. 589-602Article in journal (Refereed) Published
Abstract [en]

Bacterial biofilms affect many areas of human activity including food processing, transportation, public infrastructure, and most importantly healthcare. This study addresses the prevention of biofilms and shows that the surface charge of an abiotic substrate influences bacterial motility as well as the morphology and physiology of the biofilm. Grafting-from polymerisation was used to create polymer brush surfaces with different characteristics, and the development of Pseudomonas aeruginosa biofilms was followed using confocal microscopy. Interestingly, two types of biofilms developed on these surfaces: mushroom structures with high levels of cyclic diguanylate (c-di-GMP) were found on negatively charged poly (3-sulphopropylmethacrylate) (SPM) and zwitterionic poly (2-(methacryloyloxy)ethyl)dimethyl-3-sulphoproyl) ammonium hydroxide) (MEDSAH), while flat biofilms developed on glass, positively charged poly (2-(methacryloyloxy)-ethyl trimethyl ammonium chloride) (METAC), protein-repellent poly oligo(ethylene glycol methyl ether methacrylate) (POEGMA) and hydrophobic polymethylmethacrylate (PMMA). The results show that of all the surfaces studied, overall the negatively charged polymer brushes were most efficient in reducing bacterial adhesion and biofilm formation. However, the increased level of regulatory c-di-GMP in mushroom structures suggests that bacteria are capable of a quick physiological response when exposed to surfaces with varying physicochemical characteristics enabling some bacterial colonization also on negatively charged surfaces.

Place, publisher, year, edition, pages
RSC Publishing, 2013. Vol. 1, no 6, p. 589-602
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-70378DOI: 10.1039/c3bm00197kISI: 000330134900004OAI: oai:DiVA.org:umu-70378DiVA, id: diva2:621271
Funder
Carl Tryggers foundation Swedish Research Council
Available from: 2013-05-14 Created: 2013-05-14 Last updated: 2018-06-08Bibliographically approved
In thesis
1. Antivirulent and antibiofilm salicylidene acylhydrazide complexes in solution and at interfaces
Open this publication in new window or tab >>Antivirulent and antibiofilm salicylidene acylhydrazide complexes in solution and at interfaces
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The growing bacterial resistance against antibiotics creates a limitation for using traditional antibiotics and requests development of new approaches for treatment of bacterial infections. Among the bacterial infections that are most difficult to treat, biofilm-associated infections are one of the most hazardous. Consequently, the prevention of biofilm formation is a very important issue. One of the techniques that are widely investigated nowadays for this purpose is surface modification by polymer brushes that allows generating antifouling antibacterial surfaces. Previously, it was reported that salicylidene acylhydrazides (hydrazones) are good candidates as antivirulence drugs targeting the type three secretion system (T3SS). This secretion system is used by several Gramnegative pathogens, including Pseudomonas aeruginosa, to deliver toxins into a host cell. Furthermore, the chemical structure of these substances allows formation of complexes with metal ions, such as Fe3+ and Ga3+. The antibacterial activity of Ga3+ is well known and attributed to its similarity to the Fe3+ ion. It has also been shown that Ga3+ ions are able to suppress biofilm formation and growth in bacteria. In this thesis the chemistry of antibacterial and antivirulence Ga3+-Hydrazone complexes in solution was studied. First, to get insights in the solution chemistry, the protonation and the stability constants as well as the speciation of the Ga3+-Hydrazone complexes were determined. Additionally, a procedure for anchoring one of the hydrazone substances to antifouling polymer brushes was optimized, and the resulting surfaces were characterized. Results showed that the complexation with Ga3+ ions stabilizes the ligand and increases its solubility. Ga3+ ion binds to the hydrazone molecule forming a strong chelate that should be stable at physiological conditions. The different biological assays, such as Ga3+ uptake, antivirulence and antibiofilm effects, indicated very complex interaction of these complexes with the bacterial cell. Negatively charged and zwitterionic surfaces strongly reduced protein adsorption as well as biofilm formation. Therefore, the antifouling zwitterionic poly-[2-(methacryloyloxy)ethyl]dimethyl-3- sulfopropyl)-ammonium hydroxide (pMEDSAH) brushes were post-modified and successfully functionalized with bioactive substances via a block-copolymerization strategy. However, in order to maintain the availability of the bioactive substance after functionalization, the hydrophobic polyglycidylmethacrylate (pGMA) top block is probably better to functionalize with a lipophilic molecules to reduce diblock copolymer brush rearrangement.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2015. p. 84
Keyword
Antivirulent, Antibiofilm, Hydrazones, Gallium, Pseudomonas aeruginosa, Type three secretion system, Equilibrium constant, Chemical equilibrium modelling, Spectrophotometric titration, UV-Vis
National Category
Chemical Sciences
Identifiers
urn:nbn:se:umu:diva-107889 (URN)978-91-7601-307-6 (ISBN)
Public defence
2015-09-24, KB3B1 KBC, Umeå, 10:00 (English)
Opponent
Supervisors
Available from: 2015-09-03 Created: 2015-08-28 Last updated: 2018-06-07Bibliographically approved

Open Access in DiVA

fulltext(8032 kB)96 downloads
File information
File name FULLTEXT02.pdfFile size 8032 kBChecksum SHA-512
ee7f0571d5b28916e965893d6f57f7376aada8243cd095f510fefff98303ff66915fe23715da29ef917dfdd742e59ac8134cc5d83a59f5ad80ade9fe8ccef760
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Rzhepishevska, OlenaHakobyan, ShoghikRuhal, RohitBarbero, DavidRamstedt, Madeleine

Search in DiVA

By author/editor
Rzhepishevska, OlenaHakobyan, ShoghikRuhal, RohitBarbero, DavidRamstedt, Madeleine
By organisation
Department of ChemistryDepartment of Physics
In the same journal
Journal of Biomaterials Science. Polymer Edition
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 96 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 599 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf