umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Soil organic phosphorus transformations in a boreal forest chronosequence
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2013 (English)In: Plant and Soil, ISSN 0032-079X, E-ISSN 1573-5036, Vol. 367, no 1-2, 149-162 p.Article in journal (Refereed) Published
Abstract [en]

Background and Aims Soil phosphorus (P) composition changes with ecosystem development, leading to changes in P bioavailability and ecosystem properties. Little is known, however, about how soil P transformations proceed with ecosystem development in boreal regions. Methods We used 1-dimensional 31P and 2-dimensional 1H, 31P correlation nuclear magnetic resonance (NMR) spectroscopy to characterise soil organic P transformations in humus horizons across a 7,800 year-old chronosequence in Västerbotten, northern Sweden. Results Total soil P concentration varied little along the chronosequence, but P compounds followed three trends. Firstly, the concentrations of DNA, 2-aminoethyl phosphonic acid, and polyphosphate, increased up to 1,200–2,700 years and then declined. Secondly, the abundances of α– and β—glycerophosphate, nucleotides, and pyrophosphate, were higher at the youngest site compared with all other sites. Lastly, concentrations of inositol hexakisphosphate fluctuated with site age. The largest changes in soil P composition tended to occur in young sites which also experience the largest shifts in plant community composition. Conclusions The apparent lack of change in total soil P is consistent with the youth and nitrogen limited nature of the Västerbotten chronosequence. Based on 2D NMR spectra, around 40 % of extractable soil organic P appeared to occur in live microbial cells. The observed trends in soil organic P may be related to shifts in plant community composition (and associated changes in soil microorganisms) along the studied chronosequence, but further studies are needed to confirm this.

Place, publisher, year, edition, pages
Springer, 2013. Vol. 367, no 1-2, 149-162 p.
Keyword [en]
Podzolization, 1D 31P NMR, 2D 1H, 31P correlation NMR, Inositol hexakisphosphate, Ribonucleic acid (RNA), Västerbotten chronosequence
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-71214DOI: 10.1007/s11104-013-1731-zOAI: oai:DiVA.org:umu-71214DiVA: diva2:622768
Available from: 2013-05-23 Created: 2013-05-23 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Analysis and speciation of organic phosphorus in environmental matrices: Development of methods to improve 31P NMR analysis
Open this publication in new window or tab >>Analysis and speciation of organic phosphorus in environmental matrices: Development of methods to improve 31P NMR analysis
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Phosphorus (P) is an essential element for life on our planet. It is central in numerous biochemical processes in terrestrial and aqueous ecosystems including food production; and it is the primary growth-limiting nutrient in some of the world’s biomes. The main source of P for use as agricultural fertilizer is mining of non-renewable mineral phosphate. In terrestrial ecosystems the main source is soil P, where the largest fraction is organic P, composed of many species with widely differing properties. This fraction controls the utilization of P by plants and microorganisms and influences ecosystem development and productivity. However, there is only scarce knowledge about the molecular composition of the organic P pool, about the processes controlling its bioavailability, and about its changes as soils develop. Therefore, the aim of this thesis was to develop robust solution- and solid-state 31P nuclear magnetic resonance spectroscopy (NMR) methods to provide molecular information about speciation of the organic P pool, and to study its dynamics in boreal and tropical soils. By studying humus soils of a groundwater recharge/discharge productivity gradient in a Fennoscandian boreal forest by solution- and solid-state NMR, it was found that P speciation changed with productivity. In particular, the level of orthophosphate diesters decreased with increasing productivity while mono-esters such as inositol phosphates increased. Because the use of solution NMR on conventional NaOH/EDTA extracts of soils was limited due to severe line broadening caused by the presence of paramagnetic metal ions, a new extraction method was developed and validated. Based on the removal of these paramagnetic impurities by sulfide precipitation, a dramatic decrease in NMR linewidths was obtained, allowing for the first time to apply modern multi-dimensional solution NMR techniques to soil extracts. Identification of individual soil P-species, and tracking changes in the organic P pools during soil development provided information for connecting P-speciation to bioavailability and ecosystem properties. Using this NMR approach we studied the transformation of organic P in humus soils along a chronosequence (7800 years) in Northern Sweden. While total P varied little, the composition of the soil P pool changed particularly among young sites, where also the largest shift in the composition of the plant community and of soil microorganisms was observed. Very old soils, such as found Africa, are thought to strongly adsorb P, limiting plant productivity. I used NMR to study the effect of scattered agroforestry trees on P speciation in two semi-arid tropical woodlands with different soil mineralogy (Burkina Faso). While the total P concentration was low, under the tree canopies higher amounts of P and higher diversity of P-species were found, presumably reflecting higher microbial activity.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2014. 58 p.
Keyword
Phosphorus, soil, 31P NMR, NaOH/EDTA, terrestrial, sulfide, speciation, bioavailability, paramagnetic, humus, boreal, tropical, multi-dimensional, agroforestry, chronosequence
National Category
Physical Chemistry
Research subject
Physical Chemistry
Identifiers
urn:nbn:se:umu:diva-93409 (URN)978-91-7601-132-4 (ISBN)
Public defence
2014-10-17, KBC-huset, Stora hörsalen, KB3B1, KBC huset, s-90187, Umeå, 10:00 (English)
Opponent
Supervisors
Note

I delarbete III har titel och författaruppgifter förändrats.

Available from: 2014-09-26 Created: 2014-09-19 Last updated: 2014-09-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Vincent, Andrea GVestergren, JohanGröbner, GerhardPersson, PerSchleucher, JürgenGiesler, Reiner

Search in DiVA

By author/editor
Vincent, Andrea GVestergren, JohanGröbner, GerhardPersson, PerSchleucher, JürgenGiesler, Reiner
By organisation
Department of Ecology and Environmental SciencesDepartment of ChemistryDepartment of Medical Biochemistry and Biophysics
In the same journal
Plant and Soil
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 336 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf