umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Likelihood ratio procedures for subset selection and ranking problemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 1979 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet , 1979. , 31 p.
##### Series

, Statistical research report, ISSN 0348-0399 ; 8
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:umu:diva-73606OAI: oai:DiVA.org:umu-73606DiVA: diva2:632696
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Projects

digitalisering@umu
##### Note

##### In thesis

This report deals with procedures for random-size subset selection fromk(> 2) given populations where the distribution of ir^(i = l, ..., k)has a density f^(x;0^). Let ••• -®[k] denote unknown values ofthe parameters, and let ^[i]» ***'ïï[k] denote the corresponding populations.First, we have considered the problem of selection for consider the/sprocedure that selects TT. if sup L(0;x) > c L(0;x), where L(*;x) is the1 e e u . - - - - -itotal likelihood function, where is the region m the parameter space foriA9= (0^, ..., 0^) having 0^ as the largest component, where 9 is the maximum likelihood estimate of 0 , and where c is a given constant with 0 < c < l .With the densities satisfying seme reasonable requirements given in this report,we have shown that for each i, the probability of includingthe selected subset is decreasing in ®[j] f°r j t i anc* increasing inWe have then derived some results on selection for the t(> 1) best populations,thereby generalizing the results for t = 1. For this problem, we haveconsidered a) selection of a set whose elements consist of subsets of thegiven populations having t members, and requiring that the set of the t• » • • •best populations is included with probability at least P , b) selection ofa subset of the populations so as to include all the t best populationswith probability at least P'*, and c) selection of a subset of the populationssuch that TT[j ^ is included with probability at least P*, j=k-t+l,.•., k. In the final section, we have discussed the relation between thetheories of subset selection based on likelihood ratios and statistical inferenceunder order restrictions, and have considered the complete rankingproblem.

There are some occurring misspellings in the formulas in the abstract on this webpage. Read the abstract in the full-text document for correct spelling in formulas, see the downloadable file.

Available from: 2013-06-25 Created: 2013-06-25 Last updated: 2013-07-02Bibliographically approved1. Selection and ranking procedures based on likelihood ratios$(function(){PrimeFaces.cw("OverlayPanel","overlay633195",{id:"formSmash:j_idt647:0:j_idt651",widgetVar:"overlay633195",target:"formSmash:j_idt647:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});