umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Methods for energy analysis of residential buildings in Nordic countries
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Arcum)
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Arcum)
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
2013 (English)In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 22, 306-318 p.Article, review/survey (Refereed) Published
Abstract [en]

To meet the goals of the directive 2010/31/EU on the energy performance of buildings, the building sector in Europe now faces a transition towards more energy efficient buildings. Research and development of new energy solutions and technology will be necessary for the transition and the importance of analyzing building energy performance increases. This paper aims to review and evaluate different methods that are commonly used to analyze energy performance in residential buildings in Nordic countries, primarily in Sweden, Norway and Finland. A short international review of regulations is also included. The goal is to find commonly used methods and possibilities for the future. The introduced methods are summarized, categorized and compared based on their advantages and disadvantages. Although the three Nordic countries have similar climate conditions and building traditions, the review shows relatively large variations in the definitions of energy performance for residential buildings, as well as variations in how measurements and calculations are used in the methods for energy performance analysis. In the conducted review, methods, or parts of methods, are also found to be used. The methods used to analyze energy performance are found to be more similar than the concepts of energy performance itself in the three countries. These aspects may be considered in further work to develop an international policy practice for energy performance of residential buildings in cold climate.

Place, publisher, year, edition, pages
Pergamon-Elsevier Science , 2013. Vol. 22, 306-318 p.
Keyword [en]
Energy measurements, Residential buildings, Cold climate, Energy evaluation, Building regulations
National Category
Building Technologies Energy Systems
Identifiers
URN: urn:nbn:se:umu:diva-78447DOI: 10.1016/j.rser.2013.02.007ISI: 000319952100025OAI: oai:DiVA.org:umu-78447DiVA: diva2:637841
Available from: 2013-07-23 Created: 2013-07-22 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Achieving building energy performance: requirements and evaluation methods for residential buildings in Sweden, Norway, and Finland
Open this publication in new window or tab >>Achieving building energy performance: requirements and evaluation methods for residential buildings in Sweden, Norway, and Finland
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Building energy performance has always been important in the cold climate of Sweden, Norway and Finland. To meet the goal that all new buildings should be nearly zero-energy buildings by 2020, set in the EU directive 2010/31/EU [1] on the energy performance of buildings (EPBD recast), the building sector in Europe now faces a transition towards buildings with improved energy performance. In such a transition, a discussion is needed about the objective of the improvement – why, or to what end, the building energy performance should be improved. The objective of improving building energy performance is often a political decision, but scientific research can contribute with knowledge on how the objectives can be achieved.

This thesis addresses how the indicators used in the requirements used to achieve building energy performance in Sweden, Norway, and Finland, and the methods used to evaluate these requirements, reflect building energy performance. It also addresses difficulties in achieving comparable and verifiable indicators in evaluations of building energy performance. The research objective has two parts: to review, compare, and discuss (i) requirements and (ii) evaluation methods used to achieve energy performance of residential buildings in Sweden, Norway and Finland. The work in this thesis includes reviews of the requirements used in national building codes and passive house criteria to achieve building energy performance, of methods used to evaluate compliance with such requirements, and of methods used specifically to evaluate the indicator Envelope Air Tightness.

The results show that different sets of indicators are used to achieve building energy performance in the studied building codes and passive house criteria. The methods used to evaluate compliance with requirements used to achieve building energy performance are also different, but calculation methods are generally more often used than measurement methods. The calculation- and measurement methods used are often simple. A methodology to analyze the deviation between predictions- and measurements of building energy performance (the performance gap) was developed, to investigate the effects of different evaluation methods on different indicators used to achieve building energy performance. The methodology was tested in a case-study. This study indicated that the choice of method affects which parts of the performance gap reflected in the indicators Supplied Energy (see Terminology), Net Energy (see Terminology), and Overall U-value. Among the reviewed methods to evaluate air tightness, the Fan/Blower Door Pressurization is well known and preferred by professionals in the field. The results in this thesis may be useful when choosing indicators and evaluation methods to achieve different objectives of improving building energy performance and in the quest towards comparable and verifiable indicators used to achieve building energy performance.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2015. 50 p.
Keyword
building codes, energy performance, evaluation methods, air tightness
National Category
Other Civil Engineering Building Technologies Energy Systems
Identifiers
urn:nbn:se:umu:diva-103749 (URN)978-91-7601-297-0 (ISBN)
Presentation
2015-06-04, MC 314, Umeå university, 901 87 Umeå, 16:33 (English)
Supervisors
Projects
Increasing Energy Efficiency in Buildings (IEEB)Sustainable Buildings for the High North (SBHN)
Available from: 2015-08-25 Created: 2015-05-28 Last updated: 2015-08-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Allard, IngridOlofsson, ThomasHassan, Osama A. B.
By organisation
Department of Applied Physics and Electronics
In the same journal
Renewable & sustainable energy reviews
Building TechnologiesEnergy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 600 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf