umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt162",{id:"formSmash:upper:j_idt162",widgetVar:"widget_formSmash_upper_j_idt162",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt169_j_idt171",{id:"formSmash:upper:j_idt169:j_idt171",widgetVar:"widget_formSmash_upper_j_idt169_j_idt171",target:"formSmash:upper:j_idt169:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfacesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2017 (English)In: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 86, no 308, 2613-2649 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2017. Vol. 86, no 308, 2613-2649 p.
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-79207DOI: 10.1090/mcom/3179ISI: 000404567600003OAI: oai:DiVA.org:umu-79207DiVA: diva2:640280
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt976",{id:"formSmash:j_idt976",widgetVar:"widget_formSmash_j_idt976",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt987",{id:"formSmash:j_idt987",widgetVar:"widget_formSmash_j_idt987",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt998",{id:"formSmash:j_idt998",widgetVar:"widget_formSmash_j_idt998",multiple:true});
##### Note

##### In thesis

We present a continuous/discontinuous Galerkin method for approximating solutions to a fourth order elliptic PDE on a surface embedded in R-3. A priori error estimates, taking both the approximation of the surface and the approximation of surface differential operators into account, are proven in a discrete energy norm and in L-2 norm. This can be seen as an extension of the formalism and method originally used by Dziuk ( 1988) for approximating solutions to the Laplace-Beltrami problem, and within this setting this is the first analysis of a surface finite element method formulated using higher order surface differential operators. Using a polygonal approximation inverted right perpendicular(h) of an implicitly defined surface inverted right perpendicular we employ continuous piecewise quadratic finite elements to approximate solutions to the biharmonic equation on inverted right perpendicular. Numerical examples on the sphere and on the torus confirm the convergence rate implied by our estimates.

Originally published in manuscript form with title [A continuous/discontinuous Galerkin method for the biharmonic problem on surfaces]

Available from: 2013-08-13 Created: 2013-08-13 Last updated: 2017-10-16Bibliographically approved1. Finite Element Methods for Thin Structures with Applications in Solid Mechanics$(function(){PrimeFaces.cw("OverlayPanel","overlay640426",{id:"formSmash:j_idt1375:0:j_idt1379",widgetVar:"overlay640426",target:"formSmash:j_idt1375:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1836",{id:"formSmash:j_idt1836",widgetVar:"widget_formSmash_j_idt1836",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1889",{id:"formSmash:lower:j_idt1889",widgetVar:"widget_formSmash_lower_j_idt1889",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1890_j_idt1892",{id:"formSmash:lower:j_idt1890:j_idt1892",widgetVar:"widget_formSmash_lower_j_idt1890_j_idt1892",target:"formSmash:lower:j_idt1890:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});