umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt161",{id:"formSmash:upper:j_idt161",widgetVar:"widget_formSmash_upper_j_idt161",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt162_j_idt164",{id:"formSmash:upper:j_idt162:j_idt164",widgetVar:"widget_formSmash_upper_j_idt162_j_idt164",target:"formSmash:upper:j_idt162:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Generation and properties of snarksPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2013 (English)In: Journal of combinatorial theory. Series B (Print), ISSN 0095-8956, E-ISSN 1096-0902, Vol. 103, no 4, p. 468-488Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. Vol. 103, no 4, p. 468-488
##### Keywords [en]

Snarks, Cycle double covers, Shortest cycle covers, Computer generation
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-79263DOI: 10.1016/j.jctb.2013.05.001ISI: 000321725600004OAI: oai:DiVA.org:umu-79263DiVA, id: diva2:645647
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt518",{id:"formSmash:j_idt518",widgetVar:"widget_formSmash_j_idt518",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt524",{id:"formSmash:j_idt524",widgetVar:"widget_formSmash_j_idt524",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt530",{id:"formSmash:j_idt530",widgetVar:"widget_formSmash_j_idt530",multiple:true}); Available from: 2013-09-05 Created: 2013-08-13 Last updated: 2018-06-08Bibliographically approved
##### In thesis

For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for snarks, the class of non-trivial 3-regular graphs which cannot be 3-edge coloured.

In the first part of this paper we present a. new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n <= 36 vertices. Previously lists up to n = 28 vertices have been published.

In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.

(C) 2013 Published by Elsevier Inc.

1. Snarks: Generation, coverings and colourings$(function(){PrimeFaces.cw("OverlayPanel","overlay511537",{id:"formSmash:j_idt807:0:j_idt811",widgetVar:"overlay511537",target:"formSmash:j_idt807:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1490",{id:"formSmash:j_idt1490",widgetVar:"widget_formSmash_j_idt1490",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1544",{id:"formSmash:lower:j_idt1544",widgetVar:"widget_formSmash_lower_j_idt1544",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1545_j_idt1547",{id:"formSmash:lower:j_idt1545:j_idt1547",widgetVar:"widget_formSmash_lower_j_idt1545_j_idt1547",target:"formSmash:lower:j_idt1545:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});