umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Crossover and evolutionary stability in the prisoner’s dilemma
Physics Department and Geography Department, Université de Montréal, Montréal, Québec, Canada.ORCID iD: 0000-0002-3982-0829
Physics Department, Université de Montréal, Montréal, Québec, Canada.
2007 (English)In: Evolutionary Computation, ISSN 1063-6560, E-ISSN 1530-9304, Vol. 15, no 3, 321-344 p.Article in journal (Refereed) Published
Abstract [en]

We examine the role played by crossover in a series of genetic algorithm-based evolutionary simulations of the iterated prisoner's dilemma. The simulations are characterized by extended periods of stability, during which evolutionarily meta-stable strategies remain more or less fixed in the population, interrupted by transient, unstable episodes triggered by the appearance of adaptively targeted predators. This leads to a global evolutionary pattern whereby the population shifts from one of a few evolutionarily metastable strategies to another to evade emerging predator strategies. While crossover is not particularly helpful in producing better average scores, it markedly enhances overall evolutionary stability. We show that crossover achieves this by (1) impeding the appearance and spread of targeted predator strategies during stable phases, and (2) greatly reducing the duration of unstable epochs, presumably by efficient recombination of building blocks to rediscover prior metastable strategies. We also speculate that during stable phases, crossover's operation on the persistently heterogeneous gene pool enhances the survival of useful building blocks, thus sustaining long-range temporal correlations in the evolving population. Empirical support for this conjecture is found in the extended tails of probability distribution functions for stable phase lifetimes.

Place, publisher, year, edition, pages
MIT Press, 2007. Vol. 15, no 3, 321-344 p.
Keyword [en]
genetic algorithms, crossover, game theory, prisoner's dilemma
National Category
Computer Science
Identifiers
URN: urn:nbn:se:umu:diva-80814DOI: 10.1162/evco.2007.15.3.321ISI: 000249149400004OAI: oai:DiVA.org:umu-80814DiVA: diva2:651652
Available from: 2013-09-26 Created: 2013-09-26 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Thibert-Plante, Xavier
In the same journal
Evolutionary Computation
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf