Change search
ReferencesLink to record
Permanent link

Direct link
Performance in omics analyses of blood samples in long-term storage: opportunities for the exploitation of existing biobanks in environmental health research
Show others and affiliations
2013 (English)In: Journal of Environmental Health Perspectives, ISSN 0091-6765, E-ISSN 1552-9924, Vol. 121, no 4, 480-487 p.Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown.

OBJECTIVES: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS (ultra performance liquid chromatography-time-of-flight mass spectrometry)], and wide-target proteomic profiles.

METHODS: We collected fresh blood samples without RNA preservative in heparin, EDTA, or citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, erythrocytes, and plasma and freezing the fractions at -80oC or in liquid nitrogen. We developed methodology for isolating RNA from the buffy coats and conducted omic analyses. Finally, we analyzed analogous samples from the EPIC-Italy and Northern Sweden Health and Disease Study biobanks.

RESULTS: Microarray-quality RNA could be isolated from buffy coats (including most biobank samples) that had been frozen within 8 hr of blood collection by thawing the samples in RNA preservative. Different anticoagulants influenced the metabolomic, proteomic, and to a lesser extent transcriptomic profiles. Transcriptomic profiles were most affected by the delay (as little as 2 hr) before blood fractionation, whereas storage temperature had minimal impact. Effects on metabolomic and proteomic profiles were noted in samples processed ≥ 8 hr after collection, but no effects were due to storage temperature. None of the variables examined significantly influenced the epigenomic profiles. No systematic influence of time-in-storage was observed in samples stored over a period of 13-17 years.

CONCLUSIONS: Most samples currently stored in biobanks are amenable to meaningful omics analysis, provided that they satisfy collection and storage criteria defined in this study.

Place, publisher, year, edition, pages
2013. Vol. 121, no 4, 480-487 p.
Keyword [en]
biomarkers, epigenomics, metabolomics, metabonomics, molecular epidemiology, proteomics, transcriptomics
National Category
Environmental Health and Occupational Health Public Health, Global Health, Social Medicine and Epidemiology Pharmacology and Toxicology
URN: urn:nbn:se:umu:diva-80868DOI: 10.1289/ehp.1205657PubMedID: 23384616OAI: diva2:651745
Available from: 2013-09-27 Created: 2013-09-27 Last updated: 2015-04-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedPerformance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research

Search in DiVA

By author/editor
Bergdahl, Ingvar A.Hallmans, Göran
By organisation
Department of Biobank ResearchOccupational and Environmental MedicineNutritional Research
In the same journal
Journal of Environmental Health Perspectives
Environmental Health and Occupational HealthPublic Health, Global Health, Social Medicine and EpidemiologyPharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 69 hits
ReferencesLink to record
Permanent link

Direct link