Change search
ReferencesLink to record
Permanent link

Direct link
Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). (Matthew Francis)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). (Matthew Francis)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Matthew Francis)
Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). (Åke Forsberg)
Show others and affiliations
2013 (English)In: PLoS ONE, ISSN 1932-6203, Vol. 8, no 10, e77767- p.Article in journal (Refereed) Published
Abstract [en]

Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.

Place, publisher, year, edition, pages
San Francisco: Public Library of Science , 2013. Vol. 8, no 10, e77767- p.
Keyword [en]
secretion control, hierarchy, translocation, InvE family, ribosome slippage, virulence
National Category
Microbiology Biochemistry and Molecular Biology Microbiology in the medical area
Research subject
URN: urn:nbn:se:umu:diva-81379DOI: 10.1371/journal.pone.0077767OAI: diva2:654855
Swedish Research Council
Available from: 2013-10-08 Created: 2013-10-08 Last updated: 2013-12-12Bibliographically approved
In thesis
1. Controlling substrate export by the Ysc-Yop type III secretion system in Yersinia
Open this publication in new window or tab >>Controlling substrate export by the Ysc-Yop type III secretion system in Yersinia
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Several pathogenic Gram-negative bacteria invest in sophisticated type III secretion systems (T3SS) to incapacitate their eukaryotic hosts. T3SSs can secrete protein cargo outside the bacterial cell and also target many of them into the eukaryotic cell interior. Internalized proteins promote bacterial colonization, survival and transmission, and can often cause severe disease. An example is the Ysc-Yop T3SS apparatus assembled by pathogenic Yersinia spp. A correctly assembled Ysc-Yop T3SS spans the Yersinia envelope and also protrudes from the bacterial surface. Upon host cell contact, this system is competent to secrete hydrophobic translocators that form a translocon pore in the host cell membrane to complete the delivery channel bridging both bacterial and host cells. Newly synthesized effector Yops may pass through this channel to gain entry into the host cell cytosol.As type III secretion (T3S) substrates function sequentially during infection, it is hypothesized that substrate export is temporally controlled to ensure that those required first are prioritized for secretion. On this basis three functional groups are classified as early (i.e. structural components), middle (i.e. translocators) and late (i.e. effectors). Factors considered to orchestrate the T3S of substrates are many, including the intrinsic substrate secretion signal sequences, customized chaperones, and recognition/sorting platforms at the base of the assembled T3SS. Investigating the interplay between these elements is critical for a better understanding of the molecular mechanisms governing export control during Yersinia T3S.To examine the composition of the N-terminal T3S signals of the YscX early substrate and the YopD middle substrate, these segments were altered by mutagenesis and the modified substrates analyzed for their T3S. Translational fusions between these signals and a signalless β-Lactamase were used to determine their optimal length required for efficient T3S. This revealed that YscX and YopD export is most efficiently supported by their first 15 N-terminal residues. At least for YopD, this is a peptide signal and not base upon information in the mRNA sequence. Moreover, features within and upstream of this segment contribute to their translational control. In parallel, bacteria were engineered to produce substrate chimeras where the N-terminal segments were exchanged between substrates of different classes in an effort to examine the temporal dynamics of T3S. In several cases, Yersinia producing chimeric substrates were defective in T3S activity, which could be a consequence of disturbing a pre-existing hierarchal secretion mechanism.YopN and TyeA regulatory molecules can be naturally produced as a 42 kDa YopN-TyeA hybrid, via a +1 frame shift event somewhere at the 5’-end of yopN. To study this event, Yersinia were engineered to artificially produce this hybrid, and these maintained in vitro T3S control of both middle and late substrates. However, modestly diminished directed targeting of effectors into eukaryotic cells correlated to virulence attenuation in vivo. Upon further investigation, a YopN C-terminal segment encompassing residues 278 to 287 was probably responsible, as this region is critical for YopN to control T3S, via enabling a specific interaction with TyeA.Investigated herein were molecular mechanisms to orchestrate substrate export by the T3SS of Yersinia. While N-terminal secretion signals may contribute to specific substrate order, the YopN and TyeA regulatory molecules do not appear to distinguish between the different substrate classes.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2013. 77 p.
Doctoral thesis / Umeå University, Department of Molecular Biology
Y. pseudotuberculosis, T3SS, YscX, YopD, assembly, translation control, temporal secretion.
National Category
Medical and Health Sciences
Research subject
urn:nbn:se:umu:diva-70113 (URN)978-91-7459-566-6 (ISBN)
Public defence
2013-05-29, Norrlands universitetssjukhus, Biomedicinhuset, Byggnad 6L, Major Groove, Umeå Universitet, Umeå, 09:00 (English)
Available from: 2013-05-08 Created: 2013-05-05 Last updated: 2013-12-12Bibliographically approved

Open Access in DiVA

fulltext(2965 kB)169 downloads
File information
File name FULLTEXT01.pdfFile size 2965 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Amer, AyadCosta, TiagoFarag, SalahAvican, UmmehanForsberg, ÅkeFrancis, Matthew
By organisation
Department of Molecular Biology (Faculty of Science and Technology)Umeå Centre for Microbial Research (UCMR)Department of Molecular Biology (Faculty of Medicine)Molecular Infection Medicine Sweden (MIMS)
In the same journal
MicrobiologyBiochemistry and Molecular BiologyMicrobiology in the medical area

Search outside of DiVA

GoogleGoogle Scholar
Total: 169 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 598 hits
ReferencesLink to record
Permanent link

Direct link