Change search
ReferencesLink to record
Permanent link

Direct link
Expression Studies of AminoAcid Transporters belonging to the Lysine and Hisitidine Transporter (LHT) Family in Hybrid Aspen Populus tremula L. x tremuloides Michx.
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The human based input of fixed nitrogen, e.g. due to nitrogenous fertilizers, is the second most important driver of global change. The active input was, however, necessary due to a fast growing demand for agricultural products in order to feed an expanding world population in the last decades. Severe environmental damages are visible now, which is why it is crucial to find alternative ways to increase plant growth and biomass production without applying massive amounts of fertilizers. One way is to identify genes, which are able to improve nitrogen use efficiency (NUE) in plants when manipulated. Especially genes involved in nitrogen uptake, assimilation and remobilization, such as amino acid transporters are of great interest. Therefore a detailed knowledge about molecular processes regarding nitrogen transport in the respective plant species is crucial. So far, there is not much known about amino acid uptake mechanisms in tree species, which is why this work focuses on hybrid aspen. It was aimed to investigate the tissue expression patterns of genes encoding putative amino acid transporters in order to find potential target genes for improving NUE in the long term.

It was shown that eight homologs of a main Arabidopsis amino acid transporter, AtLHT1, are expressed in poplar. The eight amino acid transporters displayed different expression patterns, with expression in roots, stem and leaves of young hybrid aspen. To analyze the impacts of an increased amino acid uptake phenotype in a tree model system, PtLHT1.2 was cloned into an expression vector for Agrobacterium-mediated transformation into hybrid aspen. These results will be of great value for further studies regarding NUE in tree models.

Place, publisher, year, edition, pages
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:umu:diva-81461OAI: diva2:655914
External cooperation
Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU)
Available from: 2013-10-14 Created: 2013-10-11 Last updated: 2013-10-14Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 153 hits
ReferencesLink to record
Permanent link

Direct link