Change search
ReferencesLink to record
Permanent link

Direct link
Climatic control of forest herb seed banks along a latitudinal gradient
Show others and affiliations
2013 (English)In: Global Ecology and Biogeography, ISSN 1466-822X, E-ISSN 1466-8238, Vol. 22, no 10, 1106-1117 p.Article in journal (Refereed) Published
Abstract [en]

Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2013. Vol. 22, no 10, 1106-1117 p.
Keyword [en]
Climate change, interspecific variation, plant-climate interaction, seed longevity, seed production, temperate deciduous forest, temperature
National Category
Ecology Physical Geography Earth and Related Environmental Sciences
URN: urn:nbn:se:umu:diva-81302DOI: 10.1111/geb.12068ISI: 000323897400002OAI: diva2:656215
Available from: 2013-10-15 Created: 2013-10-07 Last updated: 2013-10-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Shevtsova, Anna
By organisation
Department of Medical Biochemistry and Biophysics
In the same journal
Global Ecology and Biogeography
EcologyPhysical GeographyEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link