umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coating of soluble and immobilized enzymes with ionic polymers: full stabilization of the quaternary structure of multimeric enzymes
Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Cantoblanco, Madrid, Spain.
Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Cantoblanco, Madrid, Spain.
Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Cantoblanco, Madrid, Spain.
CBM ‘Severo Ochoa’ CSIC-UAM, Madrid, Spain.
Show others and affiliations
2009 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 10, no 4, 742-747 p.Article in journal (Refereed) Published
Abstract [en]

This paper shows a simple and effective way to avoid the dissociation of multimeric enzymes by coating their surface with a large cationic polymer (e.g., polyethylenimine (PEI)) by ionic exchange. As model enzymes, glutamate dehydrogenase (GDH) from Thermus thermophilus and formate dehydrogenase (FDH) from Pseudomonas sp. were used. Both enzymes are very unstable at acidic pH values due to the rapid dissociation of their subunits (half-life of diluted preparations is few minutes at pH 4 and 25 degrees C). GDH and FDH were incubated in the presence of PEI yielding an enzyme-PEI composite with full activity. To stabilize the enzyme-polymer composite, a treatment with glutaraldehyde was required. These enzyme-PEI composites can be crosslinked with glutaraldehyde by immobilizing previously the composite onto a weak cationic exchanger. The soluble GDH-PEI composite was much more stable than unmodified GDH at pH 4 and 30 degrees C (retaining over 90% activity after 24 h incubation) with no effect of the GDH concentration in the inactivation course. The composite could be very strongly, but reversibly, adsorbed on cationic exchangers. Similarly, FDH could be treated with PEI and glutaraldehyde after adsorption on cationic exchangers, This permitted a stabilized FDH preparation. In this way, the coating of the enzymes surfaces with PEI is used as a simple and efficient strategy to prevent enzyme dissociation of multimeric enzymes. These composites can be used as a soluble catalyst or reversibly immobilized onto a cationic exchanger (e.g., CM-agarose).

Place, publisher, year, edition, pages
2009. Vol. 10, no 4, 742-747 p.
National Category
Biochemistry and Molecular Biology Polymer Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-81863DOI: 10.1021/bm801162ePubMedID: 19267470Archive number: 000265098800015OAI: oai:DiVA.org:umu-81863DiVA: diva2:658608
Available from: 2013-10-22 Created: 2013-10-22 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Cava, Felipe
In the same journal
Biomacromolecules
Biochemistry and Molecular BiologyPolymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf