Change search
ReferencesLink to record
Permanent link

Direct link
Transmitting the allosteric signal in methylglyoxal synthase
Show others and affiliations
2013 (English)In: Protein Engineering Design & Selection, ISSN 1741-0126, E-ISSN 1741-0134, Vol. 26, no 7, 445-452 p.Article in journal (Refereed) Published
Abstract [en]

The homohexameric enzyme methylglyoxal synthase (MGS) converts dihydroxyacetone phosphate (DHAP) to methylglyoxal and phosphate. This enzyme is allosterically inhibited by phosphate. The allosteric signal induced by phosphate in MGS from Thermus sp. GH5 (TMGS) has been tracked by site-directed mutagenesis, from the binding site of phosphate to the pathways that transmit the signal, and finally to the active site which is the receiver of the signal. In TMGS, Ser-55 distinguishes the inhibitory phosphate from the phosphoryl group of the substrate, DHAP, and transmits the allosteric signal through Pro-82, Arg-97 and Val-101 to the active site. Furthermore, the addition of a C-terminal tail to TMGS reinforces the allosteric signal by introducing a new salt bridge between Asp-10 and an Arg in this tail. Lastly, the active site amino acid, Gly-56, is shown to be involved in both allostery and phosphate elimination step from DHAP by TMGS. Interestingly, some of the mutations also trigger homotropic allostery, supporting the hypothesis that allostery is an intrinsic property of all dynamic proteins. The details of the TMGS allosteric network discussed in this study can serve as a model system for understanding the enigmatic allosteric mechanism of other proteins.

Place, publisher, year, edition, pages
Oxford University Press, 2013. Vol. 26, no 7, 445-452 p.
Keyword [en]
allosteric pathway, methylglyoxal synthase from Thermus sp. GH5 (TMGS), mechanism of allostery, inhibition, triggered allostery
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:umu:diva-82396DOI: 10.1093/protein/gzt014PubMedID: 23592737OAI: diva2:661071
Available from: 2013-10-31 Created: 2013-10-31 Last updated: 2013-11-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Hofer, Anders
By organisation
Department of Medical Biochemistry and Biophysics
In the same journal
Protein Engineering Design & Selection
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 55 hits
ReferencesLink to record
Permanent link

Direct link