umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
Show others and affiliations
2002 (English)In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 23, no 16, 3369-76 p.Article in journal (Refereed) Published
Abstract [en]

After spinal cord injury, the severed neuronal pathways fail to regenerate spontaneously. This study describes a biodegradable implant using poly-beta-hydroxybutyrate (PHB) fibers as carrier scaffold for matrix components and cell lines supporting neuronal survival and regeneration after spinal cord injury. After cervical spinal cord injury in adult rats, a graft consisting of PHB fibers coated with alginate hydrogel + fibronectin was implanted in the lesion cavity. In control groups, PHB was omitted and only alginate hydrogel or fibronectin, or their combination, were used for grafting. In addition, comparisons were made with animals treated intrathecally after spinal cord injury with the neurotrophic factors BDNF or NT-3. The neurons of the rubrospinal tract served as experimental model. In untreated animals, 45% of the injured rubrospinal neurons were lost at 8 weeks postoperatively. Implantation of the PHB graft reduced this cell loss by 50%, a rescuing effect similar to that obtained after treatment with BDNF or NT-3. In the absence of PHB support, implants of only alginate hydrogel or fibronectin, or their combination, had no effect on neuronal survival. After addition of neonatal Schwann cells to the PHB graft, regenerating axons were seen to enter the graft from both ends and to extend along its entire length. These results show that implants using PHB as carrier scaffold and containing alginate hydrogel, fibronectin and Schwann cells can support neuronal survival and regeneration after spinal cord injury

Place, publisher, year, edition, pages
2002. Vol. 23, no 16, 3369-76 p.
National Category
Neurosciences
Identifiers
URN: urn:nbn:se:umu:diva-82546PubMedID: 12099279OAI: oai:DiVA.org:umu-82546DiVA: diva2:661841
Available from: 2013-11-05 Created: 2013-11-05 Last updated: 2017-12-06

Open Access in DiVA

No full text

PubMed

Search in DiVA

By author/editor
Novikov, Lev NNovikova, Liudmila NWiberg, MikaelKellerth, Jan-Olof
By organisation
AnatomyHand Surgery
In the same journal
Biomaterials
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf