umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modulation of islet ATP content by inhibition or stimulation of the Na(+)/K(+) pump
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
2001 (English)In: European Journal of Pharmacology, ISSN 0014-2999, E-ISSN 1879-0712, Vol. 426, no 1-2, 139-143 p.Article in journal (Refereed) Published
Abstract [en]

High (30 mM) K(+), known to cause beta-cell membrane depolarisation, significantly decreased the islet total ATP content, supporting the view that beta-cell membrane depolarisation can activate the ATP-consuming Na(+)/K(+) pump. Ouabain (1 mM) did not change the islet ATP content after 5-15 min of incubation in the absence or presence of 3 mM glucose but reduced it after 30 min, and in the presence of 20 mM glucose, the reduction by ouabain occurred already after 15 min. Incubation of islets with ouabain for 60 min decreased the islet ATP content in the presence of 3, 10 or 20 mM glucose or 30 mM K(+). Also, the islet glucose oxidation rate was decreased by ouabain. When K(+) deficiency was used to inhibit the Na(+)/K(+) pump, no change in ATP content was observed irrespective of glucose concentration, although K(+) deficiency caused a slight inhibition of the glucose oxidation rate. Diazoxide reduced the islet glucose oxidation rate and increased the islet ATP content in the presence of 20 mM glucose. There may exist a feedback mechanism decreasing the flow of glucose metabolism in response to reduced ATP consumption by the Na(+)/K(+) pump.

Place, publisher, year, edition, pages
Elsevier, 2001. Vol. 426, no 1-2, 139-143 p.
Keyword [en]
Ouabain, ATP, β-Cell, Islet, Na+/K+ pump
National Category
Pharmacology and Toxicology
Identifiers
URN: urn:nbn:se:umu:diva-82648DOI: 10.1016/S0014-2999(01)01214-6ISI: 000170879000019PubMedID: 11525782OAI: oai:DiVA.org:umu-82648DiVA: diva2:662084
Available from: 2013-11-06 Created: 2013-11-06 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Elmi, AdrianIdahl, Lars-ÅkeSehlin, Janove
By organisation
Histology and Cell Biology
In the same journal
European Journal of Pharmacology
Pharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf