umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical and laboratory simulations of auroral acceleration
Umeå University, Faculty of Science and Technology, Department of Physics. EISCAT Scientific Association, Kiruna.
2013 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 20, no 10, Article number: 102901- p.Article in journal (Refereed) Published
Abstract [en]

The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like. (C) 2013 AIP Publishing LLC.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2013. Vol. 20, no 10, Article number: 102901- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-83921DOI: 10.1063/1.4824453ISI: 000326644100074OAI: oai:DiVA.org:umu-83921DiVA: diva2:677912
Available from: 2013-12-10 Created: 2013-12-10 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Mann, Ingrid
By organisation
Department of Physics
In the same journal
Physics of Plasmas
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf