Change search
ReferencesLink to record
Permanent link

Direct link
A chrysophyte stomatocyst-based reconstruction of cold-season air temperature from Alpine Lake Silvaplana (AD 1500-2003); methods and concepts for quantitative inferences
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
2013 (English)In: Journal of Paleolimnology, ISSN 0921-2728, E-ISSN 1573-0417, Vol. 50, no 4, 519-533 p.Article in journal (Refereed) Published
Abstract [en]

Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct-May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the 'date of spring mixing' from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed 'dates of spring mixing' into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions ('stationarity'), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.

Place, publisher, year, edition, pages
Springer Netherlands, 2013. Vol. 50, no 4, 519-533 p.
Keyword [en]
Climate change, Golden algae, Winter-spring temperature variability, Varves, Transfer functions, Calibration in time
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:umu:diva-83888DOI: 10.1007/s10933-013-9743-5ISI: 000326622200008OAI: diva2:678399
Available from: 2013-12-12 Created: 2013-12-10 Last updated: 2013-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Westover, Karlyn
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Journal of Paleolimnology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 56 hits
ReferencesLink to record
Permanent link

Direct link