Change search
ReferencesLink to record
Permanent link

Direct link
Accurate detection of subclonal single nucleotide variants in whole genome amplified and pooled cancer samples using HaloPlex target enrichment
Show others and affiliations
2013 (English)In: BMC Genomics, ISSN 1471-2164, Vol. 14, 856- p.Article in journal (Refereed) Published
Abstract [en]

Background: Target enrichment and resequencing is a widely used approach for identification of cancer genes and genetic variants associated with diseases. Although cost effective compared to whole genome sequencing, analysis of many samples constitutes a significant cost, which could be reduced by pooling samples before capture. Another limitation to the number of cancer samples that can be analyzed is often the amount of available tumor DNA. We evaluated the performance of whole genome amplified DNA and the power to detect subclonal somatic single nucleotide variants in non-indexed pools of cancer samples using the HaloPlex technology for target enrichment and next generation sequencing. Results: We captured a set of 1528 putative somatic single nucleotide variants and germline SNPs, which were identified by whole genome sequencing, with the HaloPlex technology and sequenced to a depth of 792-1752. We found that the allele fractions of the analyzed variants are well preserved during whole genome amplification and that capture specificity or variant calling is not affected. We detected a large majority of the known single nucleotide variants present uniquely in one sample with allele fractions as low as 0.1 in non-indexed pools of up to ten samples. We also identified and experimentally validated six novel variants in the samples included in the pools. Conclusion: Our work demonstrates that whole genome amplified DNA can be used for target enrichment equally well as genomic DNA and that accurate variant detection is possible in non-indexed pools of cancer samples. These findings show that analysis of a large number of samples is feasible at low cost, even when only small amounts of DNA is available, and thereby significantly increases the chances of indentifying recurrent mutations in cancer samples.

Place, publisher, year, edition, pages
BioMed Central, 2013. Vol. 14, 856- p.
Keyword [en]
Target enrichment, HaloPlex, Non-indexed pooling, Whole genome amplification, Single nucleotide variant, Deep sequencing
National Category
Medical and Health Sciences
URN: urn:nbn:se:umu:diva-84777DOI: 10.1186/1471-2164-14-856ISI: 000328647700003OAI: diva2:691531
Available from: 2014-01-28 Created: 2014-01-20 Last updated: 2014-01-28Bibliographically approved

Open Access in DiVA

fulltext(2360 kB)100 downloads
File information
File name FULLTEXT01.pdfFile size 2360 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Forestier, Erik
By organisation
Medical and Clinical Genetics
In the same journal
BMC Genomics
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 100 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 45 hits
ReferencesLink to record
Permanent link

Direct link