Change search
ReferencesLink to record
Permanent link

Direct link
Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2014 (English)In: Hydrometallurgy, ISSN 0304-386X, Vol. 144, 7-14 p.Article in journal (Refereed) Published
Abstract [en]

The majority of the world's copper reserves are bound in the sulphide mineral chalcopyrite (CuFeS2), but supply of the copper is hindered by the recalcitrance of chalcopyrite to (bio)leaching. The main reason for the slow rate of chalcopyrite dissolution is the formation of a layer on the surface of the mineral that hinders dissolution, termed "passivation". The nature of this layer and the role of microorganisms in chalcopyrite leaching behaviour are still under debate. Moderately thermophilic bioleaching of a pyritic chalcopyrite concentrate was mimicked in an electrochemical vessel to investigate the effect of the absence and presence of microorganisms in copper dissolution efficiency. Data from the redox potential development during bioleaching was used to program a redox potential controller in an electrochemical vessel to accurately reproduce the same leaching conditions in the absence of microorganisms. Two electrochemical experiments were carried out with slightly different methods of redox potential control. Despite massive precipitation of iron as jarosite in one of the electrochemically controlled experiments and formation of elemental sulphur in both electrochemical experiments, the efficiencies of copper dissolution were similar in the electrochemical tests as well as in the bioleaching experiment. No passivation was observed and copper recoveries exhibited a linear behaviour versus the leaching time possibly due to the galvanic effect between chalcopyrite and pyrite. The data suggest that the main role of microorganisms in bioleaching of a pyritic chalcopyrite concentrate was regeneration of ferric iron. It was also shown that the X-ray photoelectron spectroscopy measurements on the residues containing bulk precipitates cannot be employed for a successful surface characterisation.

Place, publisher, year, edition, pages
2014. Vol. 144, 7-14 p.
Keyword [en]
Bioleaching, Chalcopyrite, Electrochemical cell, Redox potential, XPS, Chalcopyrite leaching, Electrochemical experiments, Electrochemical simulation, Moderately thermophilic, Pyritic chalcopyrites, Redox potentials, Surface characterisation, Copper, Copper corrosion, Dissolution, Electrochemical cells, Experiments, Microorganisms, Minerals, Passivation, Photoelectrons, Redox reactions, Secondary batteries, X ray photoelectron spectroscopy
National Category
Chemical Sciences
URN: urn:nbn:se:umu:diva-86965DOI: 10.1016/j.hydromet.2013.12.003ISI: 000335614000002OAI: diva2:705201
Available from: 2014-03-14 Created: 2014-03-14 Last updated: 2014-06-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Shchukarev, Andrey
By organisation
Department of Chemistry
In the same journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 127 hits
ReferencesLink to record
Permanent link

Direct link