umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt164",{id:"formSmash:upper:j_idt164",widgetVar:"widget_formSmash_upper_j_idt164",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt171_j_idt173",{id:"formSmash:upper:j_idt171:j_idt173",widgetVar:"widget_formSmash_upper_j_idt171_j_idt173",target:"formSmash:upper:j_idt171:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Orbit closure hierarchies of skew-symmetric matrix pencilsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet , 2014. , 18 p.
##### Series

UMINF, ISSN 0348-0542 ; 14.02
##### Keyword [en]

skew-symmetric matrix pencil, stratification, canonical structure information, orbits
##### National Category

Computer Science Computational Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-87500OAI: oai:DiVA.org:umu-87500DiVA: diva2:709586
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt600",{id:"formSmash:j_idt600",widgetVar:"widget_formSmash_j_idt600",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt606",{id:"formSmash:j_idt606",widgetVar:"widget_formSmash_j_idt606",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt612",{id:"formSmash:j_idt612",widgetVar:"widget_formSmash_j_idt612",multiple:true});
Available from: 2014-04-02 Created: 2014-04-02 Last updated: 2014-04-02Bibliographically approved
##### In thesis

We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form under congruence. This problem is also known as the stratification problem of skew-symmetric matrix pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another skew-symmetric matrix pencil. This theory relies on our main theorem stating that a skew-symmetric matrix pencil A-λB can be approximated by pencils strictly equivalent to a skew-symmetric matrix pencil C-λD if and only if A-λB can be approximated by pencils congruent to C-λD.

1. Skew-symmetric matrix pencils: stratification theory and tools$(function(){PrimeFaces.cw("OverlayPanel","overlay709589",{id:"formSmash:j_idt1258:0:j_idt1264",widgetVar:"overlay709589",target:"formSmash:j_idt1258:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1841",{id:"formSmash:j_idt1841",widgetVar:"widget_formSmash_j_idt1841",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1894",{id:"formSmash:lower:j_idt1894",widgetVar:"widget_formSmash_lower_j_idt1894",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1895_j_idt1897",{id:"formSmash:lower:j_idt1895:j_idt1897",widgetVar:"widget_formSmash_lower_j_idt1895_j_idt1897",target:"formSmash:lower:j_idt1895:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});