umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Examining the smooth and nonsmooth discrete element approaches to granular matter
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (HPC2N)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (HPC2N)
2014 (Engelska)Ingår i: International Journal for Numerical Methods in Engineering, ISSN 0029-5981, E-ISSN 1097-0207, Vol. 97, nr 12, s. 878-902Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The smooth and nonsmooth approaches to the discrete element method (DEM) are examined from a computational perspective. The main difference can be understood as using explicit versus implicit time integration. A formula is obtained for estimating the computational effort depending on error tolerance, system geometric shape and size, and on the dynamic state. For the nonsmooth DEM (NDEM), a regularized version mapping to the Hertz contact law is presented. This method has the conventional nonsmooth and smooth DEM as special cases depending on size of time step and value of regularization. The use of the projected Gauss-Seidel solver for NDEM simulation is studied on a range of test systems. The following characteristics are found. First, the smooth DEM is computationally more efficient for soft materials, wide and tall systems, and with increasing flow rate. Secondly, the NDEM is more beneficial for stiff materials, shallow systems, static or slow flow, and with increasing error tolerance. Furthermore, it is found that just as pressure saturates with depth in a granular column, due to force arching, also the required number of iterations saturates and become independent of system size. This effect make the projected Gauss-Seidel solver scale much better than previously thought.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2014. Vol. 97, nr 12, s. 878-902
Nyckelord [en]
discrete element method;multibody dynamics, granular media, contact, explicit time integration, linear solvers
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-87019ISI: 000331358000002OAI: oai:DiVA.org:umu-87019DiVA, id: diva2:710790
Tillgänglig från: 2014-04-08 Skapad: 2014-03-18 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
Ingår i avhandling
1. Accelerated granular matter simulation
Öppna denna publikation i ny flik eller fönster >>Accelerated granular matter simulation
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Accelererad simulering av granulära material
Abstract [en]

Modeling and simulation of granular matter has important applications in both natural science and industry. One widely used method is the discrete element method (DEM). It can be used for simulating granular matter in the gaseous, liquid as well as solid regime whereas alternative methods are in general applicable to only one. Discrete element analysis of large systems is, however, limited by long computational time. A number of solutions to radically improve the computational efficiency of DEM simulations are developed and analysed. These include treating the material as a nonsmooth dynamical system and methods for reducing the computational effort for solving the complementarity problem that arise from implicit treatment of the contact laws. This allow for large time-step integration and ultimately more and faster simulation studies or analysis of more complex systems. Acceleration methods that can reduce the computational complexity and degrees of freedom have been invented. These solutions are investigated in numerical experiments, validated using experimental data and applied for design exploration of iron ore pelletising systems.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2015. s. 14
Nyckelord
discrete element method, nonsmooth contact dynamics, multibody dynamics, granular media, simulation, projected Gauss-Seidel, validation, iron ore pellets, pelletising balling circuit, model reduction, design optimization
Nationell ämneskategori
Annan fysik Beräkningsmatematik
Identifikatorer
urn:nbn:se:umu:diva-110164 (URN)978-91-7601-366-3 (ISBN)
Disputation
2015-11-12, Naturvetarhuset, N460, Umeå universitet, Umeå, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
VINNOVA, 2014-01901
Anmärkning

This work has been generously supported by Algoryx Simulation, LKAB (dnr 223-

2442-09), Umeå University and VINNOVA (2014-01901).

Tillgänglig från: 2015-10-22 Skapad: 2015-10-15 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Servin, MartinWang, DaLacoursiere, ClaudeBodin, Kenneth

Sök vidare i DiVA

Av författaren/redaktören
Servin, MartinWang, DaLacoursiere, ClaudeBodin, Kenneth
Av organisationen
Institutionen för fysikInstitutionen för datavetenskap
I samma tidskrift
International Journal for Numerical Methods in Engineering
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 590 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf