umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bronchial mucosal inflammation in healthy subjects after exposure to wood smoke from incomplete combustion
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Lungmedicin.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Lungmedicin.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Lungmedicin.
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Lungmedicin.
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Indoor smoke from combustion of solid biomass fuel is a major risk factor for respiratory disease worldwide. The mechanisms by which wood smoke exhibits its effects on human health are not well understood. The aim of this study was to determine whether exposure to wood smoke produced from incomplete combustion would elicit an airway inflammatory response.

Methods Fourteen healthy subjects underwent controlled chamber exposure on two occasions to filtered air and to sooty wood smoke (PM1 ~ 314 μg/m3), generated by a common Nordic wood stove firing birch logs. The study was performed with a double-blind randomized cross-over design and the subjects alternated between exercise (VE=20 L/min/m2) and rest at 15-minute intervals for 3 hours. Bronchoscopies were performed 24 hours after each exposure where bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial biopsies were taken. Differential cell counts and soluble components were analyzed in BW and BAL. Bronchial mucosal biopsies were analyzed using immunohistochemistry. Blood tests for inflammatory markers were sampled pre-exposure as well as at 24 and 44-hour time points post-exposure. Spirometry and Fraction of exhaled nitric oxide (FENO) were performed before, immediately after and 24 hours after each exposure.

Results There was a significant increase in submucosal and epithelial CD3+ lymphocytes (p<0.01 and <0.05 respectively), together with CD8+ cells in the epithelium (p<0.05) after exposure to wood smoke compared to filtered air. Mast cells were also significantly increased in the submucosa (p<0.01) after wood smoke exposure.

There were significant reductions in macrophages, neutrophils and lymphocytes in BW after exposure to wood smoke compared to filtered air, accompanied by decreased levels of soluble Intercellular Adhesion Molecule-1 (sICAM-1), myeloperoxidase (MPO) and matrix metalloproteinase-9 (MMP-9). No significant effects on cell numbers or acute inflammatory markers were demonstrated in BAL fluid or peripheral blood. Lung function and FENO were not affected by exposure to wood smoke.

Conclusions Wood smoke exposure caused a significant increase in bronchial epithelial and submucosal CD3+ lymphocytes together with an increase in mucosal mast cells. Further examination revealed a significant increase in CD8+ lymphocytes within the epithelium. Unexpectedly there were no indications of any neutrophilic airway response or recruitment of alveolar macrophages. BW cell numbers, MPO and MMP-9 levels were also significantly reduced after wood smoke exposure. Further research is needed to determine the precise role of these events in relationship to the adverse health effects attributed to wood smoke exposure.

Nationell ämneskategori
Lungmedicin och allergi
Identifikatorer
URN: urn:nbn:se:umu:diva-88609OAI: oai:DiVA.org:umu-88609DiVA, id: diva2:716553
Tillgänglig från: 2014-05-11 Skapad: 2014-05-11 Senast uppdaterad: 2018-06-07
Ingår i avhandling
1. Diesel exhaust and wood smoke: mechanisms, inflammation and intervention
Öppna denna publikation i ny flik eller fönster >>Diesel exhaust and wood smoke: mechanisms, inflammation and intervention
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Background Particulate matter (PM) air pollution is associated with increased respiratory and cardiovascular morbidity and mortality. Diesel engine exhaust (DE) and wood combustion are major contributors to ambient air pollution and adverse health effects. The aim of this thesis was to investigate the fate of inhaled combustion-derived PM, the subsequent effects on pulmonary inflammation and symptomatology and to explore the potential for particle filters to improve public health. Additionally, it aimed at increasing the understanding of the pathophysiological mechanisms underlying the adverse vascular effects of PM inhalation in man.

Methods In study I, lung deposition of wood smoke-derived particulates from incomplete combustion was determined in healthy and COPD subjects. In study II, airway inflammation was assessed in healthy subjects exposed to wood smoke and filtered air. In study III, vehicle cabin air inlet filters were evaluated regarding filtering capacity for DE and whether they affected the toxicological potential of the filtered PM. Healthy subjects were then exposed to filtered air and unfiltered DE, as well as DE filtered through two selected filters. In study IV, healthy subjects were exposed to filtered air and DE. Nitric oxide bioavailability was assessed by plethysmography in the presence of an NO clamp (NO synthase inhibitor NG-monomethyl locally and systemically administered) with measurements of arterial stiffness, cardiac output and blood pressure (BP).

Results Study I: The total PM number deposition fraction of the wood smoke was 0.32 and 0.35 for healthy and COPD subjects respectively. Study II: Inhalation of wood smoke caused CD3+ and mast cell infiltration in the bronchial submucosa along with CD8+ cell recruitment to the epithelium. In bronchial wash, inflammatory cells, myeloperoxidase and matrix metalloproteinase 9 levels decreased. Study III: An efficient cabin air filter with an active charcoal component was most favourable in in-vitro tests and reduced symptoms in the human exposure study. Study IV: Local NO synthase inhibition caused similar vasoconstriction after exposure to DE and filtered air, along with an increase in plasma nitrate concentrations, suggesting an increase in the basal NO release due to oxidative stress. Systemic NO synthase inhibition increased arterial stiffness and blood pressure after DE exposure along with an increase in systemic vascular resistance and reduced cardiac output, implying that the increased basal NO release could not compensate for the reduced NO bioavailability in the conduit vessels.

Conclusion Wood smoke particles from incomplete combustion tend to have a greater airway deposition than particles from better combustion. The airway inflammatory responses to the former particles differ from what have been shown for other PM pollutants, which may be of importance for subsequent health effects. The vasomotor dysfunction shown after DE exposure may largely be explained by reduced NO bioavailability. A vehicle cabin air inlet particle filter with active charcoal was effective to reduce DE exposure and subsequent symptoms. This may conceptually be of benefit when it comes to decreasing engine exhaust-related adverse health effects.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2014. s. 85
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1641
Nyckelord
Air pollution, deposition, bronchoscopy, Immunohistochemstry, filter, NO bioavailability
Nationell ämneskategori
Lungmedicin och allergi
Forskningsämne
lungmedicin
Identifikatorer
urn:nbn:se:umu:diva-88614 (URN)978-91-7601-028-0 (ISBN)
Disputation
2014-06-05, Hörsal Betula, byggnad 6M, Norrlands Universitetssjukhus, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-05-13 Skapad: 2014-05-11 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Muala, AlaRankin, GregorySehlstedt, MariaUnosson, JonBosson, JennyBehndig, AnnelieNyström, RobinBoman, ChristofferPourazar, JamshidBlomberg, AndersSandström, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Muala, AlaRankin, GregorySehlstedt, MariaUnosson, JonBosson, JennyBehndig, AnnelieNyström, RobinBoman, ChristofferPourazar, JamshidBlomberg, AndersSandström, Thomas
Av organisationen
LungmedicinInstitutionen för tillämpad fysik och elektronik
Lungmedicin och allergi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 262 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf