Change search
ReferencesLink to record
Permanent link

Direct link
Hydrogen-Driven Cage Unzipping of C-60 into Nano-Graphenes
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2014 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 12, 6504-6513 p.Article in journal (Refereed) Published
Abstract [en]

Annealing of C-60 in hydrogen at temperatures above the stability limit of C H bonds in C60Hx (500-550 degrees C) is found to result in direct collapse of the cage structure, evaporation of light hydrocarbons, and formation of solid mixture composed of larger hydrocarbons and few-layered graphene sheets. Only a minor part of this mixture is soluble; this was analyzed using matrix-assisted laser desorption/ionization MS, Fourier transform infrared (FTIR), and nuclear magnetic resonance spectroscopy and found to be a rather complex mixture of hydrocarbon molecules composed of at least tens of different compounds. The sequence of most abundant peaks observed in MS, which corresponds to C2H2 mass difference, suggests a stepwise breakup of the fullerene cage into progressively smaller molecular fragments edge-terminated by hydrogen. A simple model of hydrogen-driven C-60 unzipping is proposed to explain the observed sequence of fragmentation products. The insoluble part of the product mixture consists of large planar polycyclic aromatic hydrocarbons, as evidenced by FTIR and Raman spectroscopy, and some larger sheets composed of few-layered graphene, as observed by transmission electron microscopy. Hydrogen annealing of C-60 thin films showed a thickness-dependent results with reaction products significantly different for the thinnest films compared to bulk powders. Hydrogen annealing of C-60 films with the thickness below 10 nm was found to result in formation of nanosized islands with Raman spectra very similar to the spectra of coronene oligomers and conductivity typical for graphene.

Place, publisher, year, edition, pages
2014. Vol. 118, no 12, 6504-6513 p.
National Category
Physical Chemistry
URN: urn:nbn:se:umu:diva-88396DOI: 10.1021/jp500377sISI: 000333578300059OAI: diva2:718254
Available from: 2014-05-20 Created: 2014-05-05 Last updated: 2014-05-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Talyzin, Alexandr V.Luzan, Serhiy
By organisation
Department of Physics
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 59 hits
ReferencesLink to record
Permanent link

Direct link