umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy
Umeå University, Faculty of Science and Technology, Department of Physics. (Laser physics group)
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2014 (English)In: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 31, no 12, 2938-2945 p.Article in journal (Refereed) Published
Abstract [en]

The detection sensitivity of phase-modulated techniques such as frequency-modulation spectroscopy (FMS) and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is often limited by etalon background signals. It has previously been shown that the impact of etalons can be reduced by the use of etalon-immune distances (EIDs), i.e., by separating the surfaces that give rise to etalons by a distance of q. L-m, where L-m is given by c/2n nu(m), where, in turn, n and nu(m) are the index of refraction between the components that make up the etalon (thus most often that of air) and the modulation frequency, respectively, and where q is an integer (i.e., 1, 2, 3,.) or half-integer (i.e., 1/2, 1, 3/2,.) for the dispersion and absorption modes of detection, respectively. An etalon created by surfaces separated by an EID will evade detection and thereby not contribute to any background signal. The concept of EIDs in FMS and NICE-OHMS is in this work demonstrated, scrutinized, and discussed in some detail. It is shown that the influence of EIDs on the absorption and dispersion modes of detection is significantly different; signals detected at the dispersion phase are considerably less sensitive to deviations from exact EID conditions than those detected at the absorption phase. For example, the FM background signal from an etalon whose length deviates from an EID by 2.5% of L-m (e.g., by 1 cm for an L-m of 40 cm), detected in dispersion, is only 9% of that in absorption. This makes the former mode of detection the preferred one whenever a sturdy immunity against etalons is needed or when optical components with parallel surfaces (e.g., lenses, polarizers, or beam splitters) are used. The impact of the concept of EIDs on NICE-OHMS is demonstrated by the use of Allan-Werle plots.

Place, publisher, year, edition, pages
2014. Vol. 31, no 12, 2938-2945 p.
National Category
Atom and Molecular Physics and Optics
Research subject
Physics
Identifiers
URN: urn:nbn:se:umu:diva-92503DOI: 10.1364/JOSAB.31.002938ISI: 000345901500002OAI: oai:DiVA.org:umu-92503DiVA: diva2:741068
Funder
Swedish Research Council
Note

Included in theses in manuscript form with the title: "On the use of etalon-immune-distances to reduce the influence of background signals in frequency modulation spectroscopy and NICE-OHMS"

Available from: 2014-08-27 Created: 2014-08-27 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Further development of NICE-OHMS: – an ultra-sensitive frequency-modulated cavity-enhanced laser-based spectroscopic
 technique for detection of molecules in gas phase
Open this publication in new window or tab >>Further development of NICE-OHMS: – an ultra-sensitive frequency-modulated cavity-enhanced laser-based spectroscopic
 technique for detection of molecules in gas phase
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, NICE-OHMS, is a laser-based spectroscopic detection technique that comprises the concepts of frequency modulation (FM, for reduction of 1/f-noise by detecting the signal at a high frequency) and cavity enhancement (CE, for a prolongation of the optical path length) in a unique way. Properly designed, this gives the technique an intrinsic immunity against the frequency-to-noise conversion that limits many other types of CE techniques. All this gives it an exceptionally high sensitivity for detection of molecular species. Although originally developed for frequency standard purposes in the late 1990s, soon thereafter development of the technique towards molecular spectroscopy and trace gas detection was initiated. This thesis focuses on the further development of Doppler- broadened NICE-OHMS towards an ultra-sensitive detection technique. A number of concepts have been addressed. A few of these are: i) The detection sensitivity of fiber-laser-based NICE- OHMS has been improved to the 10−12 cm−1 range, which for detection of C2H2 corresponds to a few ppt (parts-per-trillion, 1:1012) in gas phase, by improving the locking of the laser to a cavity mode by use of an acousto-optic modulator. ii) It is shown that the system can be realized with a more compact footprint by implementation of a fiber-optic circulator. iii) A systematic and thorough investigation of the experimental conditions that provide maximum signals, referred to as the optimum conditions, e.g. modulation and demodulation conditions and cavity length, has been performed. As a part of this, an expression for the NICE-OHMS line shape beyond the conventional triplet formalism has been proposed and verified. iv) To widen the applicability of NICE-OHMS for detection of pressure broadened signals, also a setup based upon a distributed-feedback (DFB) laser has been realized. v) In this regime, the Voigt profile cannot model signals with the accuracy that is needed for a proper assessment of analyte concentrations. Therefore, the thesis demonstrates the first implementations of line profiles encompassing Dicke narrowing and speed-dependent effects to NICE-OHMS. While such profiles are well-known for absorption, there were no expressions available for their dispersion counterparts. Such expressions have been derived and validated by accompanying experiments. vi) The applicability of the technique for elemental detection, then referred to as NICE-AAS, has been prophesied. 

Abstract [sv]

Brusimmun kavitetsförstärkt optisk-heterodyndetekterad molekylärspektroskopi (NICE-OHMS) är en laser-baserad spektroskopisk teknik som förenar frekvensmodulation (för reducring av 1/f-brus genom detektion vid en hög frekvens) och kavitetsförstärkning (KF, för en förlängning av den optiska väglangden) på ett unikt sätt. Korrekt realiserad uppvisar tekniken en inneboende immunitet mot omvandling av frekvensbrus till intensitetsbrus som många andra KF-tekniker är begränsade av. Allt detta ger tekniken en exceptionellt hög känslighet för molekyldetektion. Ursprungligen utvecklad för frekvensstandardändamål i slutet av 1990, har den sedan dess utvecklats för molekylspektroskopi och spårgasdetektering. Denna avhandling fokuserar på vidareutvecklingen av NICE-OHMS mot en tillämpbar, ultrakänslig detektionsteknik. Ett antal koncept har adresserats. Några av dessa är: i) Detektionskänsligheten hos fiberlaserbaserad NICE-OHMS har förbättrats till 10-12 cm-1 området, vilket för detektion av C2H2 i gasfas motsvarar några få ppt (parts per biljon, 1:1012), genom att förbättra låsningen av lasern till en kavitetsmod med hjälp av en akustooptisk modulator. ii) Det har demonstrerats att NICE-OHMS kan realiseras mer kompakt med hjälp av en fiber-kopplad optisk cirkulator. iii) En systematisk och grundlig utredning av de experimentella förhållanden som ger maximala signaler, betecknade de optimala förhållanden, t.ex. modulering och demodulering och kavitetslängden, har utförts. Som ett led i detta har ett uttryck för NICE-OHMS linjeform bortom den konventionella triplett formalismen föreslagits och verifierats. iv) För att bredda tillämpbarheten av NICE-OHMS för detektering av tryckbreddade signaler har även en instrumentering baserad på en distribuerad-återkopplad (eng. distributed feedback, DFB) laser realiserats. v) I detta område kan inte Voigt profilen modellera signalen med den noggrannhet som krävs för en korrekt bedömning av analytkoncentrationer. Därför visar avhandlingen de första implementeringarna i NICE-OHMS av linjeprofiler som inkluderar Dicke avsmalning (eng. Dicke narrowing) och hastighetsberoende effekter (eng. speed-dependent effects). Emedan sådana profiler är välkända för absorption, fanns det inga uttryck för deras dispersiva motparter. Sådana uttryck har därför härletts och validerats av medföljande experiment. vi) Tillämpbarheten av tekniken för detektion av atomer, NICE-AAS, har diskuterats och förutspåtts. 

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2014. 108 p.
Keyword
NICE-OHMS, Frequency Modulation, Cavity Enhancement, Molecular Spectroscopy
National Category
Atom and Molecular Physics and Optics
Research subject
Physics
Identifiers
urn:nbn:se:umu:diva-92510 (URN)978-91-7601-107-2 (ISBN)
Public defence
2014-09-25, Naturvetarhuset (N450), Johan Bures väg, Umeå, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 621-2008-3674Swedish Research Council, 621-2011-4216
Note

Ytterligare forskningsfinansiär: Kempestiftelserna

Available from: 2014-09-04 Created: 2014-08-27 Last updated: 2014-09-05Bibliographically approved
2. Cavity enhanced optical sensing
Open this publication in new window or tab >>Cavity enhanced optical sensing
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Kavitetsförstärkt optisk detektion
Abstract [en]

An optical cavity comprises a set of mirrors between which light can be reflected a number of times. The selectivity and stability of optical cavities make them extremely useful as frequency references or discri­mi­nators. With light coupled into the cavity, a sample placed inside a cavity will experience a significantly increased interaction length. Hence, they can be used also as amplifiers for sensing purposes. In the field of laser spectroscopy, some of the most sensitive techniques are therefore built upon optical cavities. In this work optical cavities are used to measure properties of gas samples, i.e. absorption, dispersion, and refractivity, with unprecedented precision.

The most sensitive detection technique of all, Doppler-broadened noise-immune cavity enhanced optical heterodyne molecular spectrometry (Db NICE-OHMS), has in this work been developed to an ultra-sensitive spectroscopic technique with unprecedented detection sensitivity. By identifying limiting factors, realizing new experimental setups, and deter­mining optimal detection conditions, the sensitivity of the technique has been improved several orders of magnitude, from 8 × 10-11 to 9 × 10-14 cm-1. The pressure interval in which NICE-OHMS can be applied has been extended by deri­vation and verification of dispersions equations for so-called Dicke narrowing and speed dependent broadening effects. The theoretical description of NICE-OHMS has been expanded through the development of a formalism that can be applied to the situations when the cavity absorption cannot be considered to be small, which has expanded the dynamic range of the technique. In order to enable analysis of a large number of molecules at their most sensitive transitions (mainly their funda­mental CH vibrational transitions) NICE-OHMS instrumentation has also been developed for measurements in the mid-infrared (MIR) region. While it has been difficult to realize this in the past due to a lack of optical modulators in the MIR range, the system has been based on an optical para­metric oscillator, which can be modulated in the near-infrared (NIR) range.

As the index of refraction can be related to density, it is possible to retrieve gas density from measurements of the index of refraction. Two such instru­men­tations have been realized. The first one is based on a laser locked to a measure­ment cavity whose frequency is measured by compassion with an optical frequency comb. The second one is based on two lasers locked to a dual-cavity (i.e. one reference and one measurement cavity). By these methods changes in gas density down to 1 × 10-9 kg/m3 can be detected.

All instrumentations presented in this work have pushed forward the limits of what previously has been considered measurable. The knowledge acquired will be of great use for future ultrasensitive cavity-based detection methods.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2015. 124 p.
Keyword
Optical resonators, Fiber Laser, Parametric oscillators, Optical frequency comb, Infrared, Spectroscopy heterodyne, Spectroscopy molecular, Absorption, Dispersion, Lineshapes, Optical standards and testing, Refractivety measurements
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:umu:diva-110278 (URN)978-91-7601-338-0 (ISBN)
Public defence
2015-11-13, KBC-huset, KB3A9 (lilla hörsalen i KBC-huset), Umeå universitet, Umeå, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research CouncilThe Kempe Foundations
Available from: 2015-10-23 Created: 2015-10-19 Last updated: 2015-10-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ehlers, PatrickJohansson, Alexandra CSilander, IsakFoltynowicz, AleksandraAxner, Ove
By organisation
Department of Physics
In the same journal
Journal of the Optical Society of America. B, Optical physics
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 227 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf