umu.sePublications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

F-Factors in Hypergraphs Via AbsorptionPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Graphs and Combinatorics, ISSN 0911-0119, E-ISSN 1435-5914, Vol. 31, no 3, 679-712 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2015. Vol. 31, no 3, 679-712 p.
##### Keyword [en]

Hypergraph, k-Graph, F-factor, Minimum degree, Primary 05C65, 05C70, 05C07
##### National Category

Discrete Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-92703DOI: 10.1007/s00373-014-1410-8ISI: 000353232900015ScopusID: 2-s2.0-84896417194OAI: oai:DiVA.org:umu-92703DiVA: diva2:742342
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2014-09-01 Created: 2014-09-01 Last updated: 2015-05-26Bibliographically approved

Given integers n ≥ k > l ≥ 1 and a k-graph F with |V(F)| divisible by n, define t k l (n, F) to be the smallest integer d such that every k-graph H of order n with minimum l-degree δl(H) ≥ d contains an F-factor. A classical theorem of Hajnal and Szemerédi in (Proof of a Conjecture of P. Erd˝os, pp. 601–623, 1969) implies that t2 1 (n, Kt) = (1 − 1/t)n for integers t. For k ≥ 3, t k k−1(n, Kk k ) (the δk−1(H) threshold for perfect matchings) has been determined by Kühn and Osthus in (J Graph Theory 51(4):269–280, 2006) (asymptotically) and Rödl et al. in (J Combin Theory Ser A 116(3):613–636, 2009) (exactly) for large n. In this paper, we generalise the absorption technique of Rödl et al. in (J Combin Theory Ser A 116(3):613–636, 2009) to F-factors. We determine the asymptotic values of t k 1 (n, Kk k (m)) for k = 3, 4 and m ≥ 1. In addition, we show that for t > k = 3 and γ > 0, t3 2 (n, K3 t ) ≤ (1− 2 t2−3t+4 +γ )n provided n is large and t|n. We also bound t 3 2 (n, K3 t )from below. In particular, we deduce that t 3 2 (n, K3 4 ) = (3/4+o(1))n answering a question of Pikhurko in (Graphs Combin 24(4):391–404, 2008). In addition, we prove that t k k−1(n, Kk t ) ≤ (1 − t−1 k−1 −1 + γ )n for γ > 0, k ≥ 6 and t ≥ (3 + √ 5)k/2 provided n is large and t|n.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});