Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nucleoside-catabolizing Enzymes in Mycoplasma-infected Tumor Cell Cultures Compromise the Cytostatic Activity of the Anticancer Drug Gemcitabine
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Show others and affiliations
2014 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 289, no 19, p. 13054-13065Article in journal (Refereed) Published
Abstract [en]

Background: Gemcitabine is used to treat solid tumors. Some mycoplasmas preferentially colonize tumors in patients. Results: Mycoplasma-encoded cytidine deaminase and pyrimidine nucleoside phosphorylase compromise the cytostatic/antitumor activity of gemcitabine in mycoplasma-infected tumor cell cultures and xenografts in mice. Conclusion: Tumor-associated mycoplasmas may decrease the therapeutic efficiency of gemcitabine. Significance: Current treatment of mycoplasma-infected tumors with gemcitabine may be suboptimal. The intracellular metabolism and cytostatic activity of the anticancer drug gemcitabine (2,2-difluoro-2-deoxycytidine; dFdC) was severely compromised in Mycoplasma hyorhinis-infected tumor cell cultures. Pronounced deamination of dFdC to its less cytostatic metabolite 2,2-difluoro-2-deoxyuridine was observed, both in cell extracts and spent culture medium (i.e. tumor cell-free but mycoplasma-containing) of mycoplasma-infected tumor cells. This indicates that the decreased antiproliferative activity of dFdC in such cells is attributed to a mycoplasma cytidine deaminase causing rapid drug catabolism. Indeed, the cytostatic activity of gemcitabine could be restored by the co-administration of tetrahydrouridine (a potent cytidine deaminase inhibitor). Additionally, mycoplasma-derived pyrimidine nucleoside phosphorylase (PyNP) activity indirectly potentiated deamination of dFdC: the natural pyrimidine nucleosides uridine, 2-deoxyuridine and thymidine inhibited mycoplasma-associated dFdC deamination but were efficiently catabolized (removed) by mycoplasma PyNP. The markedly lower anabolism and related cytostatic activity of dFdC in mycoplasma-infected tumor cells was therefore also (partially) restored by a specific TP/PyNP inhibitor (TPI), or by exogenous thymidine. Consequently, no effect on the cytostatic activity of dFdC was observed in tumor cell cultures infected with a PyNP-deficient Mycoplasma pneumoniae strain. Because it has been reported that some commensal mycoplasma species (including M. hyorhinis) preferentially colonize tumor tissue in cancer patients, our findings suggest that the presence of mycoplasmas in the tumor microenvironment could be a limiting factor for the anticancer efficiency of dFdC-based chemotherapy. Accordingly, a significantly decreased antitumor effect of dFdC was observed in mice bearing M. hyorhinis-infected murine mammary FM3A tumors compared with uninfected tumors.

Place, publisher, year, edition, pages
2014. Vol. 289, no 19, p. 13054-13065
Keywords [en]
Anticancer Drug, Cancer Therapy, Nucleoside Nucleotide Analogs, Nucleoside Nucleotide Metabolism, Phosphorylase, Mycoplasma hyorhinis, Cytidine Deaminase, Gemcitabine, Mycoplasma, Pyrimidine Nucleoside Phosphorylase
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:umu:diva-90771DOI: 10.1074/jbc.M114.558924ISI: 000335522800009PubMedID: 24668817Scopus ID: 2-s2.0-84900439025OAI: oai:DiVA.org:umu-90771DiVA, id: diva2:754349
Available from: 2014-10-10 Created: 2014-07-01 Last updated: 2023-03-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Hofer, AndersRanjbarian, Farahnaz

Search in DiVA

By author/editor
Hofer, AndersRanjbarian, Farahnaz
By organisation
Department of Medical Biochemistry and Biophysics
In the same journal
Journal of Biological Chemistry
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 369 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf