umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multi-voxel Patterns in Fear Network Regions Predict Clinical Outcome One-year after Cognitive Behavior Therapy for Social Anxiety Disorder: A Support Vector Machine fMRI Study
Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).ORCID-id: 0000-0002-4458-6475
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Biological Psychiatry, Elsevier, 2014, s. 83S-84SKonferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

Background: Cognitive behavioral therapy (CBT) has yielded robust treatment effects for social anxiety disorder (SAD) but still many patients do not respond fully to treatment, and a substantial proportion relapse after treatment has ended. Identification of robust predictors of sustained treatment responses could be of high clinical importance. Methods: We used functional magnetic resonance imaging (fMRI; 3T General Electric) to assess 26 patients (85% women, mean age 32.3 years) with SAD. Blood-oxygen-level dependent (BOLD) responses to self-referential criticism, i.e. reading sentences such as “Nobody likes you” were compared to criticism referring to other individuals. Responses in the fear network, i.e. the amygdala, hippocampus, anterior cingulate cortex (ACC), and insula, were evaluated in a Support Vector Machine (SVM) approach to predict treatment outcome one-year after Internet-delivered CBT. We applied leave-one-out cross-validation to increase the generalizability of the data. Results: At one-year follow-up, three patients had dropped out. Twelve (52%) of the assessed patients met the response criteria, i.e. very much or much improved according to the Clinical Global Impression-Improvement scale (CGI-I). SVM on initial BOLD response, accurately classified patients according to responder status, based on multi-voxel patterns in the ACC (balanced accuracy of 91.7%, p=.001, Figure 1), and the ACC together with the amygdala (83.0%, p=.004) as well as the hippocampus (73.9%, p=.032). Conclusions: We demonstrate that initial multi-voxel BOLD response patterns to self-referential criticism in the ACC, amygdala, and hippocampus are highly predictive of long-term improvement of CBT in patients with SAD.

Ort, förlag, år, upplaga, sidor
Elsevier, 2014. s. 83S-84S
Nationell ämneskategori
Psykiatri Neurologi
Forskningsämne
psykologi
Identifikatorer
URN: urn:nbn:se:umu:diva-94685OAI: oai:DiVA.org:umu-94685DiVA, id: diva2:755575
Konferens
69th Annual Scientific Convention and Meeting of the Society-of-Biological-Psychiatry, May 8-10, 2014, New York
Tillgänglig från: 2014-10-15 Skapad: 2014-10-15 Senast uppdaterad: 2018-06-07

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

URL

Personposter BETA

Olsson, Carl-Johan

Sök vidare i DiVA

Av författaren/redaktören
Olsson, Carl-Johan
Av organisationen
Umeå centrum för funktionell hjärnavbildning (UFBI)
PsykiatriNeurologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 299 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf