Change search
ReferencesLink to record
Permanent link

Direct link
Compartment modeling of dynamic brain PET: the impact of scatter corrections on parameter errors
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065.
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
2014 (English)In: Medical physics, ISSN 0094-2405, Vol. 41, no 11, 111907- p.Article in journal (Refereed) Published
Abstract [en]

Purpose: The aim of this study was to investigate the effect of scatter and its correction on kinetic parameters in dynamic brain positron emission tomography (PET) tumor imaging. The 2-tissue compartment model was used, and two different reconstruction methods and two scatter correction (SC) schemes were investigated.

Methods: The gate Monte Carlo (MC) softwarewas used to perform 2×15 full PET scan simulations of a voxelized head phantom with inserted tumor regions. The two sets of kinetic parameters of all tissues were chosen to represent the 2-tissue compartment model for the tracer 3′-deoxy- 3′-(18F)fluorothymidine (FLT), and were denoted FLT1 and FLT2. PET data were reconstructed with both 3D filtered back-projection with reprojection (3DRP) and 3D ordered-subset expectation maximization (OSEM). Images including true coincidences with attenuation correction (AC) and true+scattered coincidences with AC and with and without one of two applied SC schemes were reconstructed. Kinetic parameters were estimated by weighted nonlinear least squares fitting of image derived time–activity curves. Calculated parameters were compared to the true input to the MC simulations.

Results: The relative parameter biases for scatter-eliminated data were 15%, 16%, 4%, 30%, 9%, and 7% (FLT1) and 13%, 6%, 1%, 46%, 12%, and 8% (FLT2) for K1, k2, k3, k4,Va, and Ki, respectively. As expected, SC was essential for most parameters since omitting it increased biases by 10 percentage points on average. SC was not found necessary for the estimation of Ki and k3, however. There was no significant difference in parameter biases between the two investigated SC schemes or from parameter biases from scatter-eliminated PET data. Furthermore, neither 3DRP nor OSEM yielded the smallest parameter biases consistently although therewas a slight favor for 3DRP which produced less biased k3 and Ki estimates while OSEM resulted in a less biased Va. The uncertainty in OSEM parameterswas about 26% (FLT1) and 12% (FLT2) larger than for 3DRP although identical postfilters were applied.

Conclusions: SC was important for good parameter estimations. Both investigated SC schemes performed equally well on average and properly corrected for the scattered radiation, without introducing further bias. Furthermore, 3DRP was slightly favorable over OSEM in terms of kinetic parameter biases and SDs.

Place, publisher, year, edition, pages
American Association of Physicists in Medicine , 2014. Vol. 41, no 11, 111907- p.
Keyword [en]
compartment modeling; dynamic pet; monte carlo; scatter correction
National Category
Other Physics Topics Medical Image Processing
Research subject
URN: urn:nbn:se:umu:diva-95115DOI: 10.1118/1.4897610ISI: 000344999800028OAI: diva2:757498
Swedish National Infrastructure for Computing (SNIC), 2013/1-234
Available from: 2014-10-22 Created: 2014-10-22 Last updated: 2016-05-26Bibliographically approved
In thesis
1. Quantitative methods for tumor imaging with dynamic PET
Open this publication in new window or tab >>Quantitative methods for tumor imaging with dynamic PET
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Kvantitativa metoder för tumöravbildning med dynamisk PET
Abstract [en]

There is always a need and drive to improve modern cancer care. Dynamic positron emission tomography (PET) offers the advantage of in vivo functional imaging, combined with the ability to follow the physiological processes over time. In addition, by applying tracer kinetic modeling to the dynamic PET data, thus estimating pharmacokinetic parameters associated to e.g. glucose metabolism, cell proliferation etc., more information about the tissue's underlying biology and physiology can be determined. This supplementary information can potentially be a considerable aid when it comes to the segmentation, diagnosis, staging, treatment planning, early treatment response monitoring and follow-up of cancerous tumors.

We have found it feasible to use kinetic parameters for semi-automatic tumor segmentation, and found parametric images to have higher contrast compared to static PET uptake images. There are however many possible sources of errors and uncertainties in kinetic parameters obtained through compartment modeling of dynamic PET data. The variation in the number of detected photons caused by the random nature of radioactive decay, is of course always a major source. Other sources may include: the choice of an appropriate model that is suitable for the radiotracer in question, camera detectors and electronics, image acquisition protocol, image reconstruction algorithm with corrections (attenuation, random and scattered coincidences, detector uniformity, decay) and so on. We have found the early frame sampling scheme in dynamic PET to affect the bias and uncertainty in calculated kinetic parameters, and that scatter corrections are necessary for most but not all parameter estimates. Furthermore, analytical image reconstruction algorithms seem more suited for compartment modeling applications compared to iterative algorithms.

This thesis and included papers show potential applications and tools for quantitative pharmacokinetic parameters in oncology, and help understand errors and uncertainties associated with them. The aim is to contribute to the long-term goal of enabling the use of dynamic PET and pharmacokinetic parameters for improvements of today's cancer care.

Abstract [sv]

Det finns alltid ett behov och en strävan att förbättra dagens cancervård. Dynamisk positronemissionstomografi (PET) medför fördelen av in vivo funktionell avbilning, kombinerad med möjligheten att följa fysiologiska processer över tiden. Genom att därtill tillämpa kinetisk modellering på det dynamiska PET-datat, och därigenom skatta farmakokinetiska parametrar associerade till glukosmetabolism, cellproliferation etc., kan ytterligare information om vävnadens underliggande biologi och fysiologi bestämmas. Denna kompletterande information kan potentiellt vara till stor nytta för segmentering, diagnos, stadieindelning, behandlingsplanering, monitorering av tidig behandlingsrespons samt uppföljning av cancertumörer.

Vi fann det möjligt att använda kinetiska parametrar för semi-automatisk tumörsegmentering, och fann även att parametriska bilder hade högre kontrast jämfört med upptagsbilder från statisk PET. Det finns dock många möjliga källor till osäkerheter och fel i kinetiska parametrar som beräknats genom compartment-modellering av dynamisk PET. En av de största källorna är det radioaktiva sönderfallets slumpmässiga natur som orsakar variationer i antalet detekterade fotoner. Andra källor inkluderar valet av compartment-modell som är lämplig för den aktuella radiotracern, PET-kamerans detektorer och elektronik, bildtagningsprotokoll, bildrekonstruktionsalgoritm med tillhörande korrektioner (attenuering, slumpmässig och spridd strålning, detektorernas likformighet, sönderfall) och så vidare. Vi fann att tidssamplingsschemat för tidiga bilder i dynamisk PET påverkar både fel och osäkerhet i beräknade kinetiska parametrar, och att bildkorrektioner för spridd strålning är nödvändigt för de flesta men inte alla parametrar. Utöver detta verkar analytiska bildrekonstruktionsalgoritmer vara bättre lämpade för tillämpningar som innefattar compartment-modellering i jämförelse med iterativa algoritmer.

Denna avhandling med inkluderade artiklar visar möjliga tillämpningar och verktyg för kvantitativa kinetiska parametrar inom onkologiområdet. Den bidrar också till förståelsen av fel och osäkerheter associerade till dem. Syftet är att bidra till det långsiktiga målet att möjliggöra användandet av dynamisk PET och farmakokinetiska parametrar för att förbättra dagens cancervård.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2014. 94 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 1683
Dynamic positron emission tomography, PET, tumor imaging, compartment modeling, Monte Carlo
National Category
Medical Image Processing Other Physics Topics
Research subject
urn:nbn:se:umu:diva-95126 (URN)978-91-7601-160-7 (ISBN)
Public defence
2014-12-12, Hörsal Betula, Norrlands Universitetssjukhus, Umeå, 09:00 (Swedish)
Swedish National Infrastructure for Computing (SNIC), HPC2N-2009-001Swedish National Infrastructure for Computing (SNIC), 2013/1-234Swedish National Infrastructure for Computing (SNIC), 2014/1-260
Available from: 2014-11-21 Created: 2014-10-22 Last updated: 2016-05-26Bibliographically approved

Open Access in DiVA

ImpactOfScatterCorrections(1196 kB)20 downloads
File information
File name FULLTEXT02.pdfFile size 1196 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Häggström, IdaKarlsson, MikaelLarsson, Anne
By organisation
Radiation Physics
Other Physics TopicsMedical Image Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 116 hits
ReferencesLink to record
Permanent link

Direct link