Change search
ReferencesLink to record
Permanent link

Direct link
PETSTEP: generation of synthetic PET lesions for fast evaluation of segmentation methods
Wales Research and Diagnostic PET Imaging Centre, Cardiff University, Cardiff, UK.
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA.
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA.
Show others and affiliations
2015 (English)In: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 31, no 8, 969-980 p.Article in journal (Other academic) Published
Abstract [en]

Purpose: This work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques.

Methods: PETSTEP was implemented within Matlab as open source software. It allows generating threedimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images.

Results: PETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods.

Conclusions: PETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods.

Place, publisher, year, edition, pages
2015. Vol. 31, no 8, 969-980 p.
Keyword [en]
Positron emission tomography, Digital phantoms, Simulation, Image segmentation, Synthetic lesions
National Category
Other Physics Topics Cancer and Oncology Radiology, Nuclear Medicine and Medical Imaging
Research subject
URN: urn:nbn:se:umu:diva-95493DOI: 10.1016/j.ejmp.2015.07.139ISI: 000366660400017PubMedID: 26321409OAI: diva2:759553
Swedish National Infrastructure for Computing (SNIC), 2014/1-260
Available from: 2014-10-30 Created: 2014-10-30 Last updated: 2016-06-13Bibliographically approved
In thesis
1. Quantitative methods for tumor imaging with dynamic PET
Open this publication in new window or tab >>Quantitative methods for tumor imaging with dynamic PET
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Kvantitativa metoder för tumöravbildning med dynamisk PET
Abstract [en]

There is always a need and drive to improve modern cancer care. Dynamic positron emission tomography (PET) offers the advantage of in vivo functional imaging, combined with the ability to follow the physiological processes over time. In addition, by applying tracer kinetic modeling to the dynamic PET data, thus estimating pharmacokinetic parameters associated to e.g. glucose metabolism, cell proliferation etc., more information about the tissue's underlying biology and physiology can be determined. This supplementary information can potentially be a considerable aid when it comes to the segmentation, diagnosis, staging, treatment planning, early treatment response monitoring and follow-up of cancerous tumors.

We have found it feasible to use kinetic parameters for semi-automatic tumor segmentation, and found parametric images to have higher contrast compared to static PET uptake images. There are however many possible sources of errors and uncertainties in kinetic parameters obtained through compartment modeling of dynamic PET data. The variation in the number of detected photons caused by the random nature of radioactive decay, is of course always a major source. Other sources may include: the choice of an appropriate model that is suitable for the radiotracer in question, camera detectors and electronics, image acquisition protocol, image reconstruction algorithm with corrections (attenuation, random and scattered coincidences, detector uniformity, decay) and so on. We have found the early frame sampling scheme in dynamic PET to affect the bias and uncertainty in calculated kinetic parameters, and that scatter corrections are necessary for most but not all parameter estimates. Furthermore, analytical image reconstruction algorithms seem more suited for compartment modeling applications compared to iterative algorithms.

This thesis and included papers show potential applications and tools for quantitative pharmacokinetic parameters in oncology, and help understand errors and uncertainties associated with them. The aim is to contribute to the long-term goal of enabling the use of dynamic PET and pharmacokinetic parameters for improvements of today's cancer care.

Abstract [sv]

Det finns alltid ett behov och en strävan att förbättra dagens cancervård. Dynamisk positronemissionstomografi (PET) medför fördelen av in vivo funktionell avbilning, kombinerad med möjligheten att följa fysiologiska processer över tiden. Genom att därtill tillämpa kinetisk modellering på det dynamiska PET-datat, och därigenom skatta farmakokinetiska parametrar associerade till glukosmetabolism, cellproliferation etc., kan ytterligare information om vävnadens underliggande biologi och fysiologi bestämmas. Denna kompletterande information kan potentiellt vara till stor nytta för segmentering, diagnos, stadieindelning, behandlingsplanering, monitorering av tidig behandlingsrespons samt uppföljning av cancertumörer.

Vi fann det möjligt att använda kinetiska parametrar för semi-automatisk tumörsegmentering, och fann även att parametriska bilder hade högre kontrast jämfört med upptagsbilder från statisk PET. Det finns dock många möjliga källor till osäkerheter och fel i kinetiska parametrar som beräknats genom compartment-modellering av dynamisk PET. En av de största källorna är det radioaktiva sönderfallets slumpmässiga natur som orsakar variationer i antalet detekterade fotoner. Andra källor inkluderar valet av compartment-modell som är lämplig för den aktuella radiotracern, PET-kamerans detektorer och elektronik, bildtagningsprotokoll, bildrekonstruktionsalgoritm med tillhörande korrektioner (attenuering, slumpmässig och spridd strålning, detektorernas likformighet, sönderfall) och så vidare. Vi fann att tidssamplingsschemat för tidiga bilder i dynamisk PET påverkar både fel och osäkerhet i beräknade kinetiska parametrar, och att bildkorrektioner för spridd strålning är nödvändigt för de flesta men inte alla parametrar. Utöver detta verkar analytiska bildrekonstruktionsalgoritmer vara bättre lämpade för tillämpningar som innefattar compartment-modellering i jämförelse med iterativa algoritmer.

Denna avhandling med inkluderade artiklar visar möjliga tillämpningar och verktyg för kvantitativa kinetiska parametrar inom onkologiområdet. Den bidrar också till förståelsen av fel och osäkerheter associerade till dem. Syftet är att bidra till det långsiktiga målet att möjliggöra användandet av dynamisk PET och farmakokinetiska parametrar för att förbättra dagens cancervård.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2014. 94 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 1683
Dynamic positron emission tomography, PET, tumor imaging, compartment modeling, Monte Carlo
National Category
Medical Image Processing Other Physics Topics
Research subject
urn:nbn:se:umu:diva-95126 (URN)978-91-7601-160-7 (ISBN)
Public defence
2014-12-12, Hörsal Betula, Norrlands Universitetssjukhus, Umeå, 09:00 (Swedish)
Swedish National Infrastructure for Computing (SNIC), HPC2N-2009-001Swedish National Infrastructure for Computing (SNIC), 2013/1-234Swedish National Infrastructure for Computing (SNIC), 2014/1-260
Available from: 2014-11-21 Created: 2014-10-22 Last updated: 2016-05-26Bibliographically approved

Open Access in DiVA

fulltext(6312 kB)23 downloads
File information
File name FULLTEXT02.pdfFile size 6312 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Häggström, IdaLarsson, Anne
By organisation
Radiation Physics
In the same journal
Physica medica (Testo stampato)
Other Physics TopicsCancer and OncologyRadiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 257 hits
ReferencesLink to record
Permanent link

Direct link