Change search
ReferencesLink to record
Permanent link

Direct link
Radial-basis-function level-set-based regularized Gauss-Newton-filter reconstruction scheme for dynamic shape tomography
Umeå University, Faculty of Science and Technology, Department of Computing Science.
2014 (English)In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 53, no 29, 6872-6884 p.Article in journal (Refereed) Published
Abstract [en]

The dynamic reconstruction problem in tomographic imaging is encountered in several applications, such as species determination, the study of blood flow through arteries/veins, motion compensation in medical imaging, and process tomography. The reconstruction method of choice is the Kalman filter and its variants, which, however, are faced by issues of filter tuning. In addition, since the time-propagation models of physical parameters are typically very complex, most of the time, a random walk model is considered. For geometric deformations, affine models are typically used. In our work, with the objectives of minimizing tuning issues and reconstructing time-varying geometrically deforming features of interest with affine in addition to pointwise-normal scaling motions, a novel level-set-based reconstruction scheme for ray tomography is proposed for shape and electromagnetic parameters using a regularized Gauss-Newton-filter-based scheme. We use an implicit Hermite-interpolation-based radial basis function representation of the zero level set corresponding to the boundary curve. Another important contribution of the paper is an evaluation of the shape-related Frechet derivatives that does not need to evaluate the pointwise Jacobian (the ray-path matrix in our ray-tomography problem). Numerical results validating the formulation are presented for a straight ray-based tomographic reconstruction. To the best of our knowledge, this paper presents the first tomographic reconstruction results in these settings. (C) 2014 Optical Society of America

Place, publisher, year, edition, pages
2014. Vol. 53, no 29, 6872-6884 p.
National Category
Computer Science
URN: urn:nbn:se:umu:diva-96609DOI: 10.1364/AO.53.006872ISI: 000343160200069OAI: diva2:766710
Available from: 2014-11-28 Created: 2014-11-24 Last updated: 2014-11-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Eriksson, Jerry
By organisation
Department of Computing Science
In the same journal
Applied Optics
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 55 hits
ReferencesLink to record
Permanent link

Direct link