umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Similarities Between Control Based and Behavior Based Visual Servoing
Umeå University, Faculty of Science and Technology, Department of Computing Science. (Robotics)
Umeå University, Faculty of Science and Technology, Department of Computing Science. (Robotics)
2015 (English)In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, New York: Association for Computing Machinery (ACM), 2015, 320-326 p.Conference paper, Published paper (Refereed)
Abstract [en]

Abstract Robotics is tightly connected to both artificial intelligence (AI) and control theory. Both AI and control based robotics are active and successful research areas, but research is often conducted by well separated communities. In this paper, we compare the two approaches in a case study for the design of a robot that should move its arm towards an object with the help of camera data. The control based approach is a model-free version of Image Based Visual Servoing (IBVS), which is based on mathematical modeling of the sensing and motion task. The AI approach, here denoted Behavior-Based Visual Servoing (BBVS), contains elements that are biologically plausible and inspired by schema-theory. We show how the two approaches lead to very similar solutions, even identical given a few simplifying assumptions. This similarity is shown both analytically and numerically. However, in a simple picking task with a 3 DoF robot arm, BBVS shows significantly higher performance than the IBVS approach, partly because it contains more manually tuned parameters. While the results obviously do not apply to all tasks and solutions, it illustrates both strengths and weaknesses with both approaches, and how they are tightly connected and share many similarities despite very different starting points and methodologies.

Place, publisher, year, edition, pages
New York: Association for Computing Machinery (ACM), 2015. 320-326 p.
Keyword [en]
Behavior Based Visual Servoing, Image Based Visual Servoing, Behavior Based Systems
National Category
Robotics
Research subject
Computing Science
Identifiers
URN: urn:nbn:se:umu:diva-97075DOI: 10.1145/2695664.2695949ISI: 000381029800050ISBN: 978-1-4503-3196-8 (print)OAI: oai:DiVA.org:umu-97075DiVA: diva2:770443
Conference
30th ACM/SIGAPP Symposium on Applied Computing (SAC), Salmanca, Spain, Apr 13-17, 2015.
Available from: 2014-12-10 Created: 2014-12-10 Last updated: 2016-11-30Bibliographically approved
In thesis
1. Cognitive Interactive Robot Learning
Open this publication in new window or tab >>Cognitive Interactive Robot Learning
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Building general purpose autonomous robots that suit a wide range of user-specified applications, requires a leap from today's task-specific machines to more flexible and general ones. To achieve this goal, one should move from traditional preprogrammed robots to learning robots that easily can acquire new skills. Learning from Demonstration (LfD) and Imitation Learning (IL), in which the robot learns by observing a human or robot tutor, are among the most popular learning techniques. Showing the robot how to perform a task is often more natural and intuitive than figuring out how to modify a complex control program. However, teaching robots new skills such that they can reproduce the acquired skills under any circumstances, on the right time and in an appropriate way, require good understanding of all challenges in the field. Studies of imitation learning in humans and animals show that several cognitive abilities are engaged to learn new skills correctly. The most remarkable ones are the ability to direct attention to important aspects of demonstrations, and adapting observed actions to the agents own body. Moreover, a clear understanding of the demonstrator's intentions and an ability to generalize to new situations are essential. Once learning is accomplished, various stimuli may trigger the cognitive system to execute new skills that have become part of the robot's repertoire. The goal of this thesis is to develop methods for learning from demonstration that mainly focus on understanding the tutor's intentions, and recognizing which elements of a demonstration need the robot's attention. An architecture containing required cognitive functions for learning and reproduction of high-level aspects of demonstrations is proposed. Several learning methods for directing the robot's attention and identifying relevant information are introduced. The architecture integrates motor actions with concepts, objects and environmental states to ensure correct reproduction of skills. Another major contribution of this thesis is methods to resolve ambiguities in demonstrations where the tutor's intentions are not clearly expressed and several demonstrations are required to infer intentions correctly. The provided solution is inspired by human memory models and priming mechanisms that give the robot clues that increase the probability of inferring intentions correctly. In addition to robot learning, the developed techniques are applied to a shared control system based on visual servoing guided behaviors and priming mechanisms. The architecture and learning methods are applied and evaluated in several real world scenarios that require clear understanding of intentions in the demonstrations. Finally, the developed learning methods are compared, and conditions where each of them has better applicability are discussed.

Abstract [sv]

Att bygga autonoma robotar som passar ett stort antal olika användardefinierade applikationer kräver ett språng från dagens specialiserade maskiner till mer flexibla lösningar. För att nå detta mål, bör man övergå från traditionella förprogrammerade robotar till robotar som själva kan lära sig nya färdigheter. Learning from Demonstration (LfD) och Imitation Learning (IL), där roboten lär sig genom att observera en människa eller en annan robot, är bland de mest populära inlärningsteknikerna. Att visa roboten hur den ska utföra en uppgift är ofta mer naturligt och intuitivt än att modifiera ett komplicerat styrprogram. Men att lära robotar nya färdigheter så att de kan reproducera dem under nya yttre förhållanden, på rätt tid och på ett lämpligt sätt, kräver god förståelse för alla utmaningar inom området. Studier av LfD och IL hos människor och djur visar att flera kognitiva förmågor är inblandade för att lära sig nya färdigheter på rätt sätt. De mest anmärkningsvärda är förmågan att rikta uppmärksamheten på de relevanta aspekterna i en demonstration, och förmågan att anpassa observerade rörelser till robotens egen kropp. Dessutom är det viktigt att ha en klar förståelse av lärarens avsikter, och att ha förmågan att kunna generalisera dem till nya situationer. När en inlärningsfas är slutförd kan stimuli trigga det kognitiva systemet att utföra de nya färdigheter som blivit en del av robotens repertoar. Målet med denna avhandling är att utveckla metoder för LfD som huvudsakligen fokuserar på att förstå lärarens intentioner, och vilka delar av en demonstration som ska ha robotens uppmärksamhet. Den föreslagna arkitekturen innehåller de kognitiva funktioner som behövs för lärande och återgivning av högnivåaspekter av demonstrationer. Flera inlärningsmetoder för att rikta robotens uppmärksamhet och identifiera relevant information föreslås. Arkitekturen integrerar motorkommandon med begrepp, föremål och omgivningens tillstånd för att säkerställa korrekt återgivning av beteenden. Ett annat huvudresultat i denna avhandling rör metoder för att lösa tvetydigheter i demonstrationer, där lärarens intentioner inte är klart uttryckta och flera demonstrationer är nödvändiga för att kunna förutsäga intentioner på ett korrekt sätt. De utvecklade lösningarna är inspirerade av modeller av människors minne, och en primingmekanism används för att ge roboten ledtrådar som kan öka sannolikheten för att intentioner förutsägs på ett korrekt sätt. De utvecklade teknikerna har, i tillägg till robotinlärning, använts i ett halvautomatiskt system (shared control) baserat på visuellt guidade beteenden och primingmekanismer. Arkitekturen och inlärningsteknikerna tillämpas och utvärderas i flera verkliga scenarion som kräver en tydlig förståelse av mänskliga intentioner i demonstrationerna. Slutligen jämförs de utvecklade inlärningsmetoderna, och deras applicerbarhet under olika förhållanden diskuteras.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2014. 54 p.
Series
Report / UMINF, ISSN 0348-0542 ; 14.23
Keyword
Learning from Demonstration, Imitation Learning, Human Robot Interaction, High-Level Behavior Learning, Shared Control, Cognitive Architectures, Cognitive Robotics, Priming
National Category
Robotics
Research subject
Computing Science
Identifiers
urn:nbn:se:umu:diva-97422 (URN)978-91-7601-189-8 (ISBN)
Public defence
2015-01-16, MA121, MIT-huset, Umeå, 13:30 (English)
Opponent
Supervisors
Projects
INTRO
Funder
EU, FP7, Seventh Framework Programme, 238486
Available from: 2014-12-19 Created: 2014-12-17 Last updated: 2014-12-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Fonooni, BenjaminThomas, Hellström

Search in DiVA

By author/editor
Fonooni, BenjaminThomas, Hellström
By organisation
Department of Computing Science
Robotics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 834 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf