Change search
ReferencesLink to record
Permanent link

Direct link
Small palladium islands embedded in palladium-tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics. Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2014 (English)In: Nature Communications, ISSN 2041-1723, Vol. 5, Article number: 5253- p.Article in journal (Refereed) Published
Abstract [en]

The sluggish kinetics of the oxygen reduction reaction at the cathode side of proton exchange membrane fuel cells is one major technical challenge for realizing sustainable solutions for the transportation sector. Finding efficient yet cheap electrocatalysts to speed up this reaction therefore motivates researchers all over the world. Here we demonstrate an efficient synthesis of palladium-tungsten bimetallic nanoparticles supported on ordered mesoporous carbon. Despite a very low percentage of noble metal (palladium: tungsten = 1:8), the hybrid catalyst material exhibits a performance equal to commercial 60% platinum/Vulcan for the oxygen reduction process. The high catalytic efficiency is explained by the formation of small palladium islands embedded at the surface of the palladium-tungsten bimetallic nanoparticles, generating catalytic hotspots. The palladium islands are similar to 1 nm in diameter, and contain 10-20 palladium atoms that are segregated at the surface. Our results may provide insight into the formation, stabilization and performance of bimetallic nanoparticles for catalytic reactions.

Place, publisher, year, edition, pages
Macmillan Publishers Ltd., 2014. Vol. 5, Article number: 5253- p.
Keyword [en]
chemical sciences, catalysis, materials science
National Category
Chemical Sciences Physical Sciences
URN: urn:nbn:se:umu:diva-96958DOI: 10.1038/ncomms6253ISI: 000343985400002OAI: diva2:771070
Available from: 2014-12-12 Created: 2014-12-05 Last updated: 2014-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hu, GuangzhiGracia-Espino, EduardoBarzegar, Hamid RezaSharifi, TivaShchukarev, AndreyWågberg, Thomas
By organisation
Department of PhysicsDepartment of Chemistry
In the same journal
Nature Communications
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 6009 hits
ReferencesLink to record
Permanent link

Direct link