umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt153",{id:"formSmash:upper:j_idt153",widgetVar:"widget_formSmash_upper_j_idt153",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt154_j_idt156",{id:"formSmash:upper:j_idt154:j_idt156",widgetVar:"widget_formSmash_upper_j_idt154_j_idt156",target:"formSmash:upper:j_idt154:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Orbit closure hierarchies of skew-symmetric matrix pencilsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 35, no 4, p. 1429-1443Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 35, no 4, p. 1429-1443
##### Keywords [en]

skew-symmetric matrix pencil, stratification, canonical structure information, orbit, bundle
##### National Category

Computer Sciences
##### Identifiers

URN: urn:nbn:se:umu:diva-98914DOI: 10.1137/140956841ISI: 000346843200010OAI: oai:DiVA.org:umu-98914DiVA, id: diva2:784021
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt513",{id:"formSmash:j_idt513",widgetVar:"widget_formSmash_j_idt513",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt526",{id:"formSmash:j_idt526",widgetVar:"widget_formSmash_j_idt526",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt532",{id:"formSmash:j_idt532",widgetVar:"widget_formSmash_j_idt532",multiple:true});
##### Funder

eSSENCE - An eScience CollaborationSwedish Research Council, A0581501Available from: 2015-01-28 Created: 2015-01-28 Last updated: 2018-06-07Bibliographically approved
##### In thesis

We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form under congruence. This problem is also known as the stratification problem of skew-symmetric matrix pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another skew-symmetric matrix pencil. The developed theory relies on our main theorem stating that a skew-symmetric matrix pencil A - lambda B can be approximated by pencils strictly equivalent to a skew-symmetric matrix pencil C - lambda D if and only if A - lambda B can be approximated by pencils congruent to C - lambda D.

1. Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay872408",{id:"formSmash:j_idt822:0:j_idt826",widgetVar:"overlay872408",target:"formSmash:j_idt822:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1273",{id:"formSmash:j_idt1273",widgetVar:"widget_formSmash_j_idt1273",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1326",{id:"formSmash:lower:j_idt1326",widgetVar:"widget_formSmash_lower_j_idt1326",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1327_j_idt1329",{id:"formSmash:lower:j_idt1327:j_idt1329",widgetVar:"widget_formSmash_lower_j_idt1327_j_idt1329",target:"formSmash:lower:j_idt1327:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});