Change search
ReferencesLink to record
Permanent link

Direct link
Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2014 (English)In: New Journal of Physics, ISSN 1367-2630, Vol. 16, 113050- p.Article in journal (Refereed) Published
Abstract [en]

Low-dimensional, many-body systems are often characterized by ultraslow dynamics. We study a labelled particle in a generic system of identical particles with hard-core interactions in a strongly disordered environment. The disorder is manifested through intermittent motion with scale-free sticking times at the single particle level. While for a non-interacting particle we find anomalous diffusion of the power-law form < x(2)(t)> similar or equal to t(alpha) of the mean squared displacement with 0 < alpha < 1, we demonstrate here that the combination of the disordered environment with the many-body interactions leads to an ultraslow, logarithmic dynamics < x(2)(t)> similar or equal to log(1/2)t with a universal 1/2 exponent. Even when a characteristic sticking time exists but the fluctuations of sticking times diverge we observe the mean squared displacement < x(2)(t)> similar or equal to t(gamma) with 0 < gamma < 1/2, that is slower than the famed Harris law < x(2)(t)> similar or equal to t(1/2) without disorder. We rationalize the results in terms of a subordination to a counting process, in which each transition is dominated by the forward waiting time of an ageing continuous time process.

Place, publisher, year, edition, pages
2014. Vol. 16, 113050- p.
Keyword [en]
single-file diffusion, continuous time random walks, ageing
National Category
Medical and Health Sciences
URN: urn:nbn:se:umu:diva-98909DOI: 10.1088/1367-2630/16/11/113050ISI: 000346764000002OAI: diva2:784093
Available from: 2015-01-28 Created: 2015-01-28 Last updated: 2015-01-28Bibliographically approved

Open Access in DiVA

fulltext(1345 kB)91 downloads
File information
File name FULLTEXT01.pdfFile size 1345 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Lizana, Ludvig
By organisation
Department of Physics
In the same journal
New Journal of Physics
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 91 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 43 hits
ReferencesLink to record
Permanent link

Direct link