Change search
ReferencesLink to record
Permanent link

Direct link
Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity: An experimental test
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
2015 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 506, 95-101 p.Article in journal (Refereed) Published
Abstract [en]

Accumulation records of pollutant metals in peat have been frequently used to reconstruct past atmospheric deposition rates. While there is good support for peat as a record of relative changes in metal deposition over time, questions remain whether peat archives represent a quantitative or a qualitative record. Several processes can potentially influence the quantitative record of which downwashing is particularly pertinent as it would have a direct influence on how and where atmospherically deposited metals are accumulated in peat. The aim of our study was two-fold: first, to compare and contrast the retention of dissolved Pb, Cu, Zn and Ni in peat cores; and second, to test the influence of different precipitation intensities on the potential downwashing of metals. We applied four 'rainfall' treatments to 13 peat cores over a 3-week period, including both daily (2 or 5.3 mm day(-1)) and event-based additions (37 mm day(-1), added over 1 h or over a 10 h rain event). Two main trends were apparent: 1) there was a difference in retention of the added dissolved metals in the surface layer (0-2 cm): 21-85% for Pb, 18-63% for Cu, 10-25% for Zn and 10-20% for Ni. 2) For all metals and both peat types (sphagnum lawn and fen), the addition treatments resulted in different downwashing depths, i.e., as the precipitation-addition increased so did the depth at which added metals could be detected. Although the largest fraction of Pb and Cu was retained in the surface layer and the remainder effectively immobilized in the upper peat (<= 10 cm), there was a smearing effect on the overall retention, where precipitation intensity exerts an influence on the vertical distribution of added trace metals. These results indicate that the relative position of a deposition signal in peat records would be preserved, but it would be quantitatively attenuated. 

Place, publisher, year, edition, pages
2015. Vol. 506, 95-101 p.
Keyword [en]
Deposition, Downwash, Elemental mobility, Geochemistry, Peat
National Category
URN: urn:nbn:se:umu:diva-99761DOI: 10.1016/j.scitotenv.2014.10.083ISI: 000347576800011OAI: diva2:789227
Available from: 2015-02-18 Created: 2015-02-12 Last updated: 2015-02-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hansson, Sophia V.Tolu, JulieBindler, Richard
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Science of the Total Environment

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 124 hits
ReferencesLink to record
Permanent link

Direct link