Change search
ReferencesLink to record
Permanent link

Direct link
Tree mortality in dynamic vegetation models - A key feature for accurately simulating forest properties
ETH, Dept Environm Syst Sci, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland.
ETH, Dept Environm Syst Sci, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland.
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland.
ETH, Dept Environm Syst Sci, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland.
2012 (English)In: Ecological Modelling, ISSN 0304-3800, Vol. 243, 101-111 p.Article in journal (Refereed) Published
Abstract [en]

Dynamic vegetation models are important tools in ecological research, but not all processes of vegetation dynamics are captured adequately. Tree mortality is often modeled as a function of growth efficiency and maximum age. However, empirical studies have shown for different species that slow-growing trees may become older than fast-growing trees, implying a correlation of mortality with growth rate and size rather than age. We used the ecosystem model LPJ-GUESS to compare the standard age-dependent mortality with two size-dependent mortality approaches. We found that all mortality approaches, when calibrated, yield a realistic pattern of growing stock and Plant Functional Type (PFT) distribution at five study sites in Switzerland. However, only the size-dependent approaches match a third pattern, i.e. the observed negative relationship between growth rate and longevity. As a consequence, trees are simulated to get older at higher than at lower altitudes/latitudes. In contrast, maximum tree ages do not change along these climatic gradients when the standard age-dependent mortality is used. As tree age and size determine forest structure, our more realistic mortality assumptions improved forest biomass estimation, but indicate a potential decline of carbon storage under climate change. We conclude that tree mortality should be modeled as a function of size rather than age. (C) 2012 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
1000 AE AMSTERDAM, NETHERLANDS, 2012. Vol. 243, 101-111 p.
Keyword [en]
Vegetation modeling; Intrinsic mortality; LPJ-GUESS; Climatic gradients; Maximum tree age; Maximum diameters
National Category
Climate Research
URN: urn:nbn:se:umu:diva-100193DOI: 10.1016/j.ecolmodel.2012.06.008OAI: diva2:790462
Available from: 2015-02-24 Created: 2015-02-24 Last updated: 2015-03-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wolf, A
In the same journal
Ecological Modelling
Climate Research

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 35 hits
ReferencesLink to record
Permanent link

Direct link