Change search
ReferencesLink to record
Permanent link

Direct link
Future changes in vegetation and ecosystem function of the Barents Region
Umeå University. Lund Univ, Dept Phys Geog & Ecosyst Anal, Lund, Sweden; Abisko Sci Res Stn, Abisko, Sweden.ORCID iD: 0000-0002-6692-9838
2008 (English)In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 87, no 1-2, 51-73 p.Article in journal (Refereed) Published
Abstract [en]

The dynamic vegetation model (LPJ-GUESS) is used to project transient impacts of changes in climate on vegetation of the Barents Region. We incorporate additional plant functional types, i.e. shrubs and defined different types of open ground vegetation, to improve the representation of arctic vegetation in the global model. We use future climate projections as well as control climate data for 1981-2000 from a regional climate model (REMO) that assumes a development of atmospheric CO(2)-concentration according to the B2-SRES scenario [IPCC, Climate Change 2001: The scientific basis. Contribution working group I to the Third assessment report of the IPCC. Cambridge University Press, Cambridge (2001)]. The model showed a generally good fit with observed data, both qualitatively when model outputs were compared to vegetation maps and quantitatively when compared with observations of biomass, NPP and LAI. The main discrepancy between the model output and observed vegetation is the overestimation of forest abundance for the northern parts of the Kola Peninsula that cannot be explained by climatic factors alone. Over the next hundred years, the model predicted an increase in boreal needle leaved evergreen forest, as extensions northwards and upwards in mountain areas, and as an increase in biomass, NPP and LAI. The model also projected that shade-intolerant broadleaved summergreen trees will be found further north and higher up in the mountain areas. Surprisingly, shrublands will decrease in extent as they are replaced by forest at their southern margins and restricted to areas high up in the mountains and to areas in northern Russia. Open ground vegetation will largely disappear in the Scandinavian mountains. Also counter-intuitively, tundra will increase in abundance due to the occupation of previously unvegetated areas in the northern part of the Barents Region. Spring greening will occur earlier and LAI will increase. Consequently, albedo will decrease both in summer and winter time, particularly in the Scandinavian mountains (by up to 18%). Although this positive feedback to climate could be offset to some extent by increased CO(2) drawdown from vegetation, increasing soil respiration results in NEE close to zero, so we cannot conclude to what extent or whether the Barents Region will become a source or a sink of CO(2).

Place, publisher, year, edition, pages
2008. Vol. 87, no 1-2, 51-73 p.
National Category
Climate Research
URN: urn:nbn:se:umu:diva-100479DOI: 10.1007/s10584-007-9342-4OAI: diva2:792307
Available from: 2015-03-03 Created: 2015-03-03 Last updated: 2015-03-03

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wolf, Annett
By organisation
Umeå University
In the same journal
Climatic Change
Climate Research

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link