Change search
ReferencesLink to record
Permanent link

Direct link
Characterization of cell wall in transgenic aspen with modified xylan acetylation
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]


Mature plant cells are enclosed by inflexible wall made up of cellulose microfibrils, pectins, hemicelluloses and in some cases lignin. This cell wall provides the structure and the defense for plant cells. In secondary cell walls of dicotyledons, major hemicellulose is xylan consisting of β-(1, 4)-linked xylose units. Xylan is synthesized in Golgi apparatus by several enzymes activities. REDUCED WALL ACETYLATION (RWA) genes are involved in xylan acetylation. These genes were downregulated in hybrid aspen in order to reduce xylan acetylation activity during its biosynthesis. In addition, acetyl xylan esterase (FC2) from the fungus Aspergillus niger was expressed in hybrid aspen to modify xylan acetylation post-synthetically. In this work, I have studied effects of these modifications on wood cell wall composition.

The cell wall components were sequentially extracted by using the small scale method and the weight of extractives, lignin, hemicelluloses and celluloses per weight of dry wood were determined. In addition, the Updegraff cellulose, Klason lignin contents per weight of extractive free wood were determined and monosugar compositions of non-cellulosic components were analyzed by methanolysis and Trimethylsilyl derivatisation (TMS). 

I have found that content of cellulose determined by sequential extraction method was significantly increased in all constructs as compared to the wild type. Reduction of lignin (as determined by sequential extraction) was found in DFC2 construct and RWA RNAi 35S-AB and CD constructs. Furthermore, RWA RNAi 35S-CD and RWA RNAi WP-ABCD constructs showed decreased hemicellulose as compared to the wild type. Moreover, DFC2 constructs exhibited decrease in non-cellulosic sugars hydrolyzed during TMS. FC2 expressing lines showed a reduction in xylose which is the main building block of xylan. In contrast, glucose and galactose contents were increased. Inhibition of expression of all RWA genes (WP-ABCD) caused similar changes.

Considering all the data I conclude that, reduced acetylation of xylan can affect extractability, biosynthesis or modification of polysaccharides and lignin in cell wall.

Keywords: Cellulose microfibrils; pectins; hemicellulose; lignin, xylan; secondary wall; aspen; xylan biosynthesis; biosynthesis of polysaccharides. 

Place, publisher, year, edition, pages
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:umu:diva-101316OAI: diva2:798487
External cooperation
Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SLU
Educational program
Master's Programme in Plant and Forest Biotechnology
Available from: 2015-03-27 Created: 2015-03-26 Last updated: 2015-03-27Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 257 hits
ReferencesLink to record
Permanent link

Direct link