Change search
ReferencesLink to record
Permanent link

Direct link
Temperature sensitivity of heterotrophic soil CO2 production increases with increasing carbon substrate uptake rate
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, S-90183 Umeå, Sweden.
2015 (English)In: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 80, 45-52 p.Article in journal (Refereed) Published
Abstract [en]

Temperature profoundly affects saprotrophic respiration rates, and carbon quality theory predicts that the rates' temperature Sensitivity should increase as the quality of the carbon source declines. However, reported relationships between saprotrophic respiration responses to temperature and carbon quality vary widely. Some of this variability may arise from confounding effects related to both substrate quality and substrate availability. The importance of these variables, as well as substrate diffusion and uptake rates, for the temperature sensitivity of saprotrophic respiration has been validated theoretically, but not empirically demonstrated. Thus, we tested effects of varying substrate uptake rates on the temperature sensitivity of organic carbon degradation. For this purpose we created a model system using the organic layer (O-horizon), of a boreal forest soil, specifically to test effects of varying monomer uptake and release rates. The addition of both monomers and polymers generally increased the temperature sensitivity of saprotrophic respiration. In response to added monomers, there was a linear increase in the temperature sensitivity of both substrate-induced respiration and the specific growth rate with increasing rate of substrate uptake as indicated by the CO2 production at 14 degrees C. Both of these responses diverge from those predicted by the carbon quality theory, but they provide the first empirical evidence consistent with model predictions demonstrating increased temperature sensitivity with increased uptake rate of carbon monomers over the cell membrane. These results may explain why organic material of higher carbon quality induces higher temperature responses than lower carbon quality compounds, without contradicting carbon quality theory. 

Place, publisher, year, edition, pages
2015. Vol. 80, 45-52 p.
Keyword [en]
Decomposition, Soil organic carbon, Temperature sensitivity, Q(10), Substrate availability, Substrate take
National Category
Agricultural Science Soil Science
URN: urn:nbn:se:umu:diva-99217DOI: 10.1016/j.soilbio.2014.09.021ISI: 000346545800008OAI: diva2:806977
Available from: 2015-04-22 Created: 2015-02-04 Last updated: 2015-04-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Erhagen, Björn
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Soil Biology and Biochemistry
Agricultural ScienceSoil Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 124 hits
ReferencesLink to record
Permanent link

Direct link