Change search
ReferencesLink to record
Permanent link

Direct link
In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-5900-7395
Show others and affiliations
2015 (English)In: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 38, no 1, 224-237 p.Article in journal (Refereed) Published
Abstract [en]

Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild-type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth. In this paper, we analysed the redox metabolism of frostbite1 (fro1) plants lacking Complex I under ammonium nutrition. We showed that, although ammonium leads to stress in wild type plants, ammonium does not cause reductive stress in fro1 plants. Our experimental and bioinformatic analyses indicated that mtETC dysfunction strongly influences apoplastic reactive oxygen species content and pH, and suggested that the faster growth of fro1 plants under ammonium nutrition probably results from modification of the cell wall.

Place, publisher, year, edition, pages
2015. Vol. 38, no 1, 224-237 p.
Keyword [en]
ammonium syndrome, apoplast, apoplastic pH, complex I, dysfunction of mtETC, mitochondria, redox meostasis, respiration
National Category
Botany Plant Biotechnology
URN: urn:nbn:se:umu:diva-99219DOI: 10.1111/pce.12404ISI: 000346429800019OAI: diva2:806990
Available from: 2015-04-22 Created: 2015-02-04 Last updated: 2015-11-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gardeström, Per
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Plant, Cell and Environment
BotanyPlant Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 60 hits
ReferencesLink to record
Permanent link

Direct link