Change search
ReferencesLink to record
Permanent link

Direct link
RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications
Show others and affiliations
2015 (English)In: Journal of Biomedical Materials Research. Part A, ISSN 1549-3296, E-ISSN 1552-4965, Vol. 103, no 3, 896-906 p.Article in journal (Refereed) Published
Abstract [en]

One of the main challenges in tissue engineering and regenerative medicine is the ability to maintain optimal cell function and survival post-transplantation. Biomaterials such as alginates are commonly used for immunoisolation, while they may also provide structural support to the cell transplants by mimicking the extracellular matrix. In this study, arginine-glycine-aspartate (RGD)-peptide-coupled alginates of tailored composition were produced by adopting a unique chemoenzymatic strategy for substituting the nongelling mannuronic acid on the alginate. Alginates with and without RGD were produced with high and low content of G. Using carbodiimide chemistry 0.1-0.2% of the sugar units were substituted by peptide. Furthermore, the characterization by H-1-nuclear magnetic resonance (NMR) revealed by-products from the coupling reaction that partly could be removed by coal filtration. Olfactory ensheathing cells (OECs) and myoblasts were grown in two-dimensional (2D) and 3D cultures of RGD-peptide modified or unmodified alginates obtained by the chemoenzymatically strategy and compared to native alginate. Both OECs and myoblasts adhered to the RGD-peptide modified alginates in 2D cultures, forming bipolar protrusions. OEC encapsulation resulted in cell survival for up to 9 days, thus demonstrating the potential for short-term 3D culture. Myoblasts showed long-term survival in 3D cultures, that is, up to 41 days post encapsulation. The RGD modifications did not result in marked changes in cell viability in 3D cultures. We demonstrate herein a unique technique for tailoring peptide substituted alginates with a precise and flexible composition, conserving the gel forming properties relevant for the use of alginate in tissue engineering. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 896-906, 2015.

Place, publisher, year, edition, pages
2015. Vol. 103, no 3, 896-906 p.
Keyword [en]
tissue engineering, NMR spectroscopy, alginate epimerization, central nervous system repair, factory ensheathing cells
National Category
Biomedical Laboratory Science/Technology
URN: urn:nbn:se:umu:diva-100753DOI: 10.1002/jbm.a.35230ISI: 000349103500005PubMedID: 24826938OAI: diva2:807936
Available from: 2015-04-26 Created: 2015-03-09 Last updated: 2015-04-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sandvig, Axel
By organisation
Clinical Neuroscience
In the same journal
Journal of Biomedical Materials Research. Part A
Biomedical Laboratory Science/Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link