Change search
ReferencesLink to record
Permanent link

Direct link
Oxygen enhanced torrefaction - An initial feasibility study
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Anders Nordin)ORCID iD: 0000-0002-1874-6447
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Upcoming world market prices on thermally treated and densified biomass to be feasible for coal replacement put a high demand on the process suppliers to deliver cost efficient and high energy yield conversion systems with a capacity to produce a high quality product. One of the more complex and vital parts in a torrefaction facility is the indirect or direct heat transfer system applied. This is a critical task that also may limit the scale-up potential and thus influence the economy of scale of a complete torrefaction system.

In the present study, it was demonstrated that the torrefaction reactions in a rotary drum pilot reactor (20 kgDS/h) potentially may be operated autothermally by a low level injection of air directly into the reactor for controlled in-situ partial combustion of the released torrefaction gases. Both concurrent and countercurrent gas flow patterns were evaluated for different process temperatures. At higher temperatures (338°C) in countercurrent gas flow mode, steady-state torrefaction was reached without external heat supply. The resulting torrefied biomass had higher heating value, higher carbon content and lower milling energy consumption, compared to non-oxidative torrefied biomass with same mass yield. Condensation of torrefaction gas compounds is a suggested reason.No significant decrease in the combustibility of the torrefaction gas was experienced.  The demonstrated Oxygen Enhanced Torrefaction (OET) mode thus has the potential to improve the torrefaction systems in terms of scale-up performance with reduced investment and operational costs but further validation work is needed to confirm the present findings and also to identify working conditions.

National Category
Chemical Process Engineering
URN: urn:nbn:se:umu:diva-103045OAI: diva2:812236
Available from: 2015-05-18 Created: 2015-05-18 Last updated: 2015-05-19
In thesis
1. From torrefaction to gasification: Pilot scale studies for upgrading of biomass
Open this publication in new window or tab >>From torrefaction to gasification: Pilot scale studies for upgrading of biomass
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Från torrefiering till förgasning : Experiment i pilotskala för förädling av biomassa
Abstract [en]

Increasing the share of biomass, preferably by replacing fossil fuels, is one way to mitigate the present climate change. Fossil coal can be directly replaced by co-combustion of coal and biomass and fossil engine fuels (gasoline and diesel) could potentially partly be replaced by synthetic renewable fuels produced via entrained flow gasification of biomass. The use of biomass in these processes is so far limited, partly because of the fibrous and hygroscopic nature of biomass which leads to problem in storing, transportation, handling and feeding.

This thesis demonstrates how the challenging characteristics of raw biomass are mitigated by the pretreatment method torrefaction. Torrefaction is a process where biomass is heated in an oxygen deficient atmosphere to typically between 240 and 350°C for a time period of 2 minutes to 1 hour. Most of the torrefaction R&D in the literature have so far been performed with bench-scale batch reactors. For the purpose of carefully studying continuous torrefaction, a 20 kg/h torrefaction pilot plant was therefore designed, constructed and evaluated.

The overall conclusion from this thesis is that the many benefits of torrefied biomass are valid also when produced with a continuous pilot plant and for typically Swedish forest biomasses. Some of the documented improved biomass properties are increased heating value, increased energy density, higher friability (lower milling energy) and less hydrophilic biomass (less moisture uptake). Most of the improvements can be attributed to the decomposition of hemicellulose and cellulose during torrefaction.

The most common variables for describing the torrefaction degree are mass yield or anhydrous weight loss but both are challenging to determine for continuous processes. We therefore evaluated three different methods (one existing and two new suggestions) to determine degree of torrefaction that not require measurement of mass loss. The degree of torrefaction based on analyzed higher heating value of the raw and torrefied biomass (DTFHHV) predicted mass yield most accurate and had lowest combined uncertainty.

Pelletizing biomass enhance transportation and handling but results from pelletization of torrefied biomass is still very limited in the literature and mainly reported from single pellet presses. A pelletization study of torrefied spruce with a ring die in pilot scale was therefore performed. The bulk energy density was found to be 14.6 GJ/m3 for pelletized torrefied spruce (mass yield 75%), a 40% increase compared to regular white pellets and therefore are torrefied pellets more favorable for long distance transports. More optimization of the torrefied biomass and the pelletization process is though needed for acquiring industrial quality pellets with lower amount of fines and higher pellet durability than attained in the present study.

Powders from milled raw biomass are generally problematic for feeding and handling and torrefied biomass has been proposed to mitigate these issues. The influence of torrefaction and pelletization on powder and particle properties after milling was therefore studied. The results show that powder from torrefied biomass were enhanced with higher bulk densities, lower angle of repose as well as smaller less elongated particles with less surface roughness. Even higher powder qualities were achieved by pelletizing the torrefied biomass before milling, i.e. another reason for commercial torrefied biomass to be pelletized.

Entrained flow gasification (EFG) is a promising option for conversion of biomass to other more convenient renewable energy carriers such as electricity, liquid biofuels and green petrochemicals. Also for EFGs are torrefied fuels very limited studied. Raw and torrefied logging residues were successfully gasified in a pilot scale pressurized entrained flow biomass gasifier at 2 bar(a) with a fuel feed corresponding to 270 kWth. Significantly lower methane content (50% decrease) in the syngas was also demonstrated for the torrefied fuel with mass yield 49%. The low milling energy consumption for the torrefied fuels compared to the raw fuel was beneficial for the gasification plant efficiency.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2015. 58 p.
Torrefaction, biomass, pilot scale, continuous reactor, grindability, entrained flow gasification, degree of torrefaction, biomass powder
National Category
Chemical Process Engineering
urn:nbn:se:umu:diva-103046 (URN)978-91-7601-287-1 (ISBN)
Public defence
2015-06-10, N450, Naturvetarhuset, Umeå universitet, Umeå, 13:00 (English)
Available from: 2015-05-20 Created: 2015-05-18 Last updated: 2015-05-20Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Olofsson, IngemarStrandberg, MartinPommer, LindaNordin, Anders
By organisation
Department of Applied Physics and Electronics
Chemical Process Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 167 hits
ReferencesLink to record
Permanent link

Direct link